
Application Report
SPRAAO8–April 2009

Common Object File Format
...

ABSTRACT
The assembler and link step create object files in common object file format (COFF).
COFF is an implementation of an object file format of the same name that was
developed by AT&T for use on UNIX-based systems. This format encourages modular
programming and provides powerful and flexible methods for managing code segments
and target system memory.

This appendix contains technical details about the Texas Instruments COFF object file
structure. Much of this information pertains to the symbolic debugging information that
is produced by the C compiler. The purpose of this application note is to provide
supplementary information on the internal format of COFF object files.

Topic .. Page

1 COFF File Structure .. 2
2 File Header Structure .. 4
3 Optional File Header Format .. 5
4 Section Header Structure... 5
5 Structuring Relocation Information ... 7
6 Symbol Table Structure and Content... 11

SPRAAO8–April 2009 Common Object File Format 1
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

1 COFF File Structure

File header

Optional file header

Section 1 header

Section n header

Section 1
raw data

Section n
raw data

Section 1
relocation information

Section n
relocation information

Symbol table

String table

Section headers

Raw data
(executable code and
initialized data)

Relocation
information

COFF File Structure www.ti.com

The elements of a COFF object file describe the file's sections and symbolic debugging information. These
elements include:
• A file header
• Optional header information
• A table of section headers
• Raw data for each initialized section
• Relocation information for each initialized section
• A symbol table
• A string table

The assembler and link step produce object files with the same COFF structure; however, a program that
is linked for the final time does not usually contain relocation entries. Figure 1 illustrates the object file
structure.

Figure 1. COFF File Structure

Figure 2 shows a typical example of a COFF object file that contains the three default sections, .text,
.data, and .bss, and a named section (referred to as <named>). By default, the tools place sections into
the object file in the following order: .text, .data, initialized named sections, .bss, and uninitialized named
sections. Although uninitialized sections have section headers, notice that they have no raw data,
relocation information, or line number entries. This is because the .bss and .usect directives simply
reserve space for uninitialized data; uninitialized sections contain no actual code.

Common Object File Format2 SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

File header

.text
section header

.data
section header

.bss
section header

<named> section
section header

.text
raw data

.data
raw data

<named> section
raw data

.text
relocation information

.data
relocation information

<named> section
relocation information

Symbol table

String table

Section headers

Raw data

Relocation
information

www.ti.com COFF File Structure

Figure 2. Sample COFF Object File

SPRAAO8–April 2009 Common Object File Format 3
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

2 File Header Structure
File Header Structure www.ti.com

The file header contains 22 bytes of information that describe the general format of an object file. Table 1
shows the structure of the COFF file header.

Table 1. File Header Contents
Byte Number Type Description

0-1 Unsigned short Version ID; indicates version of COFF file structure
2-3 Unsigned short Number of section headers
4-7 Integer Time and date stamp; indicates when the file was created
8-11 Integer File pointer; contains the symbol table's starting address

12-15 Integer Number of entries in the symbol table
16-17 Unsigned short Number of bytes in the optional header. This field is either 0 or 28; if it is 0, there is no

optional file header.
18-19 Unsigned short Flags (see Table 2)
20-21 Unsigned short Target ID; magic number (see Table 3) indicates the file can be executed in a specific TI

system

Table 2 lists the flags that can appear in bytes 18 and 19 of the file header. Any number and combination
of these flags can be set at the same time.

Table 2. File Header Flags (Bytes 18 and 19)
Mnemonic Flag Description
F_RELFLG 0001h Relocation information was stripped from the file
F_EXEC 0002h The file is relocatable (it contains no unresolved external references)
F_LNNO (1) 0004h For TMS430 and TMS470 only: Line numbers were stripped from the file. For

other targets: Reserved
F_LSYMS 0008h Local symbols were stripped from the file
F_LITTLE 0100h The target is a little-endian device
F_BIG (1) 0200h For C6000, MSP430, and TMS470 only: The target is a big-endian device. For

other targets: Reserved
F_SYMMERGE (1) 1000h For C2800, MSP430, and TMS470: Duplicate symbols were removed. For

C6000: Reserved

(1) No mnemonic is defined when the flag value is reserved.

Table 3 lists the magic number for each Texas Instruments device family.

Table 3. Magic Number
Magic Number Device Family
0097h TMS470
0098h TMS320C5400
0099h TMS320C6000
009Ch TMS320C5500
009Dh TMS320C2800
00A0h MSP430
00A1h TMS320C5500+

4 Common Object File Format SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

3 Optional File Header Format

4 Section Header Structure

www.ti.com Optional File Header Format

The link step creates the optional file header and uses it to perform relocation at download time. Partially
linked files do not contain optional file headers. Table 4 illustrates the optional file header format.

Table 4. Optional File Header Contents
Byte Number Type Description

0-1 Short Optional file header magic number (0108h)
2-3 Short Version stamp
4-7 Long (1) Size (in bytes) of executable code

8-11 Long (1) Size (in bytes) of initialized data
12-15 Long (1) Size (in bytes) of uninitialized data
16-19 Long (1) Entry point
20-23 Long (1) Beginning address of executable code
24-27 Long (1) Beginning address of initialized data

(1) For C6000 the type is integer.

COFF object files contain a table of section headers that define where each section begins in the object
file. Each section has its own section header. Table 5 shows the structure of each section header.

Table 5. Section Header Contents
Byte Number Type Description

0-7 Character This field contains one of the following: 1) An 8-character section name padded
with nulls. 2) A pointer into the string table if the symbol name is longer than
eight characters.

8-11 Long (1) Section's physical address
12-15 Long (1) Section's virtual address
16-19 Long (1) Section size in bytes (C6000, C55x, TMS470 and TMS430) or words (C2800,

C5400)
20-23 Long (1) File pointer to raw data
24-27 Long (1) File pointer to relocation entries
28-31 Long (1) Reserved
32-35 Unsigned long (2) Number of relocation entries
36-39 Unsigned long (2) For TMS470 and TMS430 only: Number of line number entries. For other

devices: Reserved
40-43 Unsigned long (2) Flags (see Table 7)
44-45 Unsigned short Reserved
46-47 Unsigned short Memory page number

(1) For C6000 the type is integer.
(2) For C6000 the type is unsigned integer.

For C5400 only, object files can be produced in either of two formats: COFF1 or COFF2. For all other
device families all COFF object files are in the COFF2 format. The COFF1 and COFF2 file types contain
different section header information. Table 6 shows the section header contents for COFF1 files. Table 5
shows the section header contents for COFF2 files.

SPRAAO8–April 2009 Common Object File Format 5
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

Section Header Structure www.ti.com

Table 6. Section Header Contents for COFF1
Byte Number Type Description

0-7 Character An 8-character section name padded with nulls.
8-11 Long Section's physical address

12-15 Long Section's virtual address
16-19 Long Section size in words
20-23 Long File pointer to raw data
24-27 Long File pointer to relocation entries
28-31 Long Reserved
32-33 Unsigned short Number of relocation entries
34-35 Unsigned short Reserved
36-37 Unsigned short Flags (see Table 7)

38 Char Reserved
39 Char Memory page number

Table 7 lists the flags that can appear in bytes 40 through 43 (36-37 for COFF1) of the section header.

Table 7. Section Header Flags
Mnemonic Flag Description (1)

STYP_REG 00000000h Regular section (allocated, relocated, loaded)
STYP_DSECT 00000001h Dummy section (relocated, not allocated, not loaded)
STYP_NOLOAD 00000002h Noload section (allocated, relocated, not loaded)
STYP_GROUP (2) 00000004h Grouped section (formed from several input sections). Other devices:

Reserved
STYP_PAD (2) 00000008h Padding section (loaded, not allocated, not relocated). Other devices:

Reserved
STYP_COPY 00000010h Copy section (relocated, loaded, but not allocated; relocation entries

are processed normally)
STYP_TEXT 00000020h Section contains executable code
STYP_DATA 00000040h Section contains initialized data
STYP_BSS 00000080h Section contains uninitialized data
STYP_BLOCK (3) 00001000h Alignment used as a blocking factor.
STYP_PASS (3) 00002000h Section should pass through unchanged.
STYP_CLINK 00004000h Section requires conditional linking
STYP_VECTOR (4) 00008000h Section contains vector table.
STYP_PADDED (4) 00010000h section has been padded.

(1) The term loaded means that the raw data for this section appears in the object file. Only allocated sections are written to target
memory.

(2) Applies to C2800, C5400, and C5500 only.
(3) Reserved for C2800, C5400, and C5500.
(4) Applies to C6000 only.

The flags listed in Table 7 can be combined; for example, if the flag's word is set to 060h, both
STYP_DATA and STYP_TEXT are set.

Bits 8-11 of the section header flags are used for defining the alignment. The alignment is defined to be
2^(value of bits 8-11). For example if bits 8-11 are 0101b (decimal integer 5), then the alignment is 32
(2^5).

For MSP430 and TMS470, alignment is indicated by the bits masked by 0xF00. Alignment is the value in
the bits raised to a power equal to the bit value. Alignment is 2 raised to the same power. For example, if
the value in these 4 bits is 2, the alignment is 2 raised to the power 2 (or 4).

Figure 3 illustrates how the pointers in a section header point to the elements in an object file that are
associated with the .text section.

6 Common Object File Format SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

.text

.text
section
header

.text
Raw data

.text
Relocation information

�

0−7 8−11 12−15 16−19 20−23 24−27 28−31 32−33 34−35 36−37 38 39

5 Structuring Relocation Information

www.ti.com Structuring Relocation Information

Figure 3. Section Header Pointers for the .text Section

As Figure 2 shows, uninitialized sections (created with the .bss and .usect directives) vary from this
format. Although uninitialized sections have section headers, they have no raw data or relocation
information; or, for MSP430 and TMS470, line number information. They occupy no actual space in the
object file. Therefore, the number of relocation entries, the number of line number entries, and the file
pointers are 0 for an uninitialized section. The header of an uninitialized section simply tells the link step
how much space for variables it should reserve in the memory map.

A COFF object file has one relocation entry for each relocatable reference. The assembler automatically
generates relocation entries. The link step reads the relocation entries as it reads each input section and
performs relocation. The relocation entries determine how references within each input section are
treated.

For C2800, C6000, MSP430, and TMS470, COFF file relocation information entries use the 10-byte
format shown in Table 8.

Table 8. Relocation Entry Contents, 10-Byte Format
Byte

Number Type Description
0-3 Long Virtual address of the reference
4-5 Short Symbol table index (0-65 535)
6-7 Unsigned short Reserved
8-9 Unsigned short Relocation type (see Table 11)

SPRAAO8–April 2009 Common Object File Format 7
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

Structuring Relocation Information www.ti.com

For C5400 and C5500, COFF file relocation information entries use the 12-byte format shown in Table 8.

Table 9. Relocation Entry Contents, 12-Byte Format
Byte

Number Type Description
0-3 Long Virtual address of the reference
4-7 Unsigned long Symbol table index (0-65 535)
8-9 Unsigned short For COFF1 files for C5400 only: Reserved

For COFF2 files: Additional byte used for extended address
calculations

10-11 Unsigned short Relocation type (see Table 11)

The virtual address is the symbol's address in the current section before relocation; it specifies where a
relocation must occur. (This is the address of the field in the object code that must be patched.)

Following is an example of C6000 code that generates a relocation entry:
2 .global X
3 00000000 !00000012 b X

In this example, the virtual address of the relocatable field is 0001.

The symbol table index is the index of the referenced symbol. In the preceding example, this field
contains the index of X in the symbol table. The amount of the relocation is the difference between the
symbol's current address in the section and its assembly-time address. The relocatable field must be
relocated by the same amount as the referenced symbol. In the example, X has a value of 0 before
relocation. Suppose X is relocated to address 2000h. This is the relocation amount (2000h - 0 = 2000h),
so the relocation field at address 1 is patched by adding 2000h to it.

You can determine a symbol's relocated address if you know which section it is defined in. For example, if
X is defined in .data and .data is relocated by 2000h, X is relocated by 2000h.

If the symbol table index in a relocation entry is -1 (0FFFFh), this is called an internal relocation. In this
case, the relocation amount is simply the amount by which the current section is being relocated.

The relocation type specifies the size of the field to be patched and describes how the patched value is
calculated. The type field depends on the addressing mode that was used to generate the relocatable
reference. In the preceding example for C6000, the actual address of the referenced symbol X is placed in
an 8-bit field in the object code. This is an 8-bit address, so the relocation type is R_RELBYTE. The
following tables list the relocation types by device family.

Table 10. Generic Relocation Types (Bytes 8 and 9)
Mnemonic Flag Relocation Type
RE_ADD 4000h Addition (+)
RE_SUB 4001h Subtraction (-)
RE_NEG 4002h Negate (-)
RE_MPY 4003h Multiplication (*)
RE_DIV 4004h Division (/)
RE_MOD 4005h Modulus (%)
RE_SR 4006h Logical shift right (unsigned >>)
RE_ASR 4007h Arithmetic shift right (signed >>)
RE_SL 4008h Shift left (<<)
RE_AND 4009h And (&)
RE_OR 400Ah Or (|)
RE_XOR 400Bh Exclusive Or (^)
RE_NOTB 400Ch Not (~)
RE_ULDFLD 400Dh Unsigned relocation field load
RE_SLDFLD 400Eh Signed relocation field load

8 Common Object File Format SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

www.ti.com Structuring Relocation Information

Table 10. Generic Relocation Types (Bytes 8 and 9) (continued)
Mnemonic Flag Relocation Type
RE_USTFLD 400Fh Unsigned relocation field store
RE_SSTFLD 4010h Signed relocation field store
RE_PUSH 4011h Push symbol on the stack
RE_PUSHSK 4012h Push signed constant on the stack
RE_PUSHUK 4013h Push unsigned constant on the stack
RE_PUSHPC 4014h Push current section PC on the stack
RE_DUP 4015h Duplicate top-of-stack and push a copy
RE_XSTFLD 4016h Relocation field store, signedness is irrelevant
RE_PUSHSV C011h Push symbol: SEGVALUE flag is set

Table 11. C6000 Relocation Types (Bytes 8 and 9)
Mnemonic Flag Relocation Type
R_ABS 0000h No relocation
R_RELBYTE 000Fh 8-bit direct reference to symbol's address
R_RELWORD 0010h 16-bit direct reference to symbol's address
R_RELLONG 0011h 32-bit direct reference to symbol's address
R_C60BASE 0050h Data page pointer-based offset
R_C60DIR15 0051h Load or store long displacement
R_C60PCR21 0052h 21-bit packet, PC relative
R_C60PCR10 0053h 10-bit Packet PC Relative (BDEC, BPOS)
R_C60LO16 0054h MVK instruction low half register
R_C60HI16 0055h MVKH or MVKLH high half register
R_C60SECT 0056h Section-based offset
R_C60S16 0057h Signed 16-bit offset for MVK
R_C60PCR7 0070h 7-bit Packet PC Relative (ADDKPC)
R_C60PCR12 0071h 12-bit Packet PC Relative (BNOP)

Table 12. C2800 Relocation Types (Bytes 8 and 9)
Mnemonic Flag Relocation Type
R_ABS 0000h No relocation
R_RELBYTE 000Fh 8-bit direct reference to symbol's address
R_RELWORD 0010h 16-bit direct reference to symbol's address
R_RELLONG 0011h 32-bit direct reference to symbol's address
R_PARTLS7 0028h 7-bit offset of a 22-bit address
R_PARTLS6 005Dh 6-bit offset of a 22-bit address
R_PARTMID10 005Eh Middle 10 bits of a 22-bit address
R_REL22 005Fh 22-bit direct reference to a symbol's address
R_PARTMS6 0060h Upper 6 bits of an 22-bit address
R_PARTS16 0061h Upper 16 bits of an 22-bit address
R_C28PCR16 0062h PC relative 16-bit address
R_C28PCR8 0063h PC relative 8-bit address
R_C28PTR 0064h 22-bit pointer
R_C28HI16 0065h High 16 bits of address data
R_C28LOPTR 0066h Pointer to low 64K
R_C28NWORD 0067h 16-bit negated relocation
R_C28NBYTE 0068h 8-bit negated relocation

SPRAAO8–April 2009 Common Object File Format 9
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

Structuring Relocation Information www.ti.com

Table 12. C2800 Relocation Types (Bytes 8 and 9) (continued)
Mnemonic Flag Relocation Type
R_C28HIBYTE 0069h High 8 bits of a 16-bit data
R_C28RELS13 006Ah Signed 13-bit value relocated as a 16-bit value

Table 13. C5400 Relocation Types (Bytes 10 and 11)
Mnemonic Flag Relocation Type
R_ABS 0000h No relocation
R_REL24 0005h 24-bit reference to symbol's address
R_RELBYTE 0017h 8-bit direct reference to symbol's address
R_RELWORD 0020h 16-bit direct reference to symbol's address
R_RELLONG 0021h 32-bit direct reference to symbol's address
R_PARTLS7 0028h 7 LSBs of an address
R_PARTMS9 0029h 9 MSBs of an address
R_REL13 002Ah 13-bit direct reference to symbol's address

Table 14. C5500 Relocation Types (Bytes 10 and 11)
Mnemonic Flag Relocation Type
R_ABS 0000h No relocation
R_REL24 0005h 24-bit direct reference to symbol's address
R_RELBYTE 0017h 8-bit direct reference to symbol's address
R_RELWORD 0020h 16-bit direct reference to symbol's address
R_RELLONG 0021h 32-bit direct reference to symbol's address
R_LD3_DMA 0170h 7 MSBs of a byte, unsigned; used in DMA address
R_LD3_MDP 0172h 7 bits spanning 2 bytes, unsigned; used as MDP register value
R_LD3_PDP 0173h 9 bits spanning 2 bytes, unsigned; used as PDP register value
R_LD3_REL23 0174h 23-bit unsigned value in 24-bit field
R_LD3_k8 0210h 8-bit unsigned direct reference
R_LD3_k16 0211h 16-bit unsigned direct reference
R_LD3_K8 0212h 8-bit signed direct reference
R_LD3_K16 0213h 16-bit signed direct reference
R_LD3_I8 0214h 8-bit unsigned PC-relative reference
R_LD3_I16 0215h 16-bit unsigned PC-relative reference
R_LD3_L8 0216h 8-bit signed PC-relative reference
R_LD3_L16 0217h 16-bit signed PC-relative reference
R_LD3_k4 0220h Unsigned 4-bit shift immediate
R_LD3_k5 0221h Unsigned 5-bit shift immediate
R_LD3_K5 0222h Signed 5-bit shift immediate
R_LD3_k6 0223h Unsigned 6-bit shift immediate
R_LD3_k12 0224h Unigned 12-bit shift immediate

Table 15. MSP430 and TMS470 Relocation Types (Bytes 8 and 9)
Mnemonic Flag Relocation Type
R_RELLONG 0011h 32-bit direct reference to symbol's address
R_PCR23H 0016h 23-bit PC-relative reference to a symbol's address, in halfwords

(divided by 2)
R_PCR24W 0017h 24-bit PC-relative reference to a symbol's address, in words

(divided by 4)

Common Object File Format10 SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

6 Symbol Table Structure and Content

Defined global symbols

Undefined global symbols

Static variables

...

www.ti.com Symbol Table Structure and Content

The order of symbols in the symbol table is very important; they appear in the sequence shown in
Figure 4.

Figure 4. Symbol Table Contents

Static variables refer to symbols defined in C/C++ that have storage class static outside any function. If
you have several modules that use symbols with the same name, making them static confines the scope
of each symbol to the module that defines it (this eliminates multiple-definition conflicts).

The entry for each symbol in the symbol table contains the symbol's:
• Name (or an offset into the string table)
• Type
• Value
• Section it was defined in
• Storage class

For MSP430 and TMS470, the entry for each symbol in the symbol table also contains the symbol's:
• Basic type (integer, character, etc.)
• Derived type (array, structure, etc.)
• Dimensions
• Line number of the source code that defined the symbol

Section names are also defined in the symbol table.

All symbol entries, regardless of class and type, have the same format in the symbol table. Each symbol
table entry contains the 18 bytes of information listed in Table 16. Each symbol may also have an 18-byte
auxiliary entry; the special symbols listed in Table 17 always have an auxiliary entry. Some symbols may
not have all the characteristics listed above; if a particular field is not set, it is set to null.

Table 16. Symbol Table Entry Contents
Byte Number Type Description

0-7 Char This field contains one of the following: 1) An 8-character symbol name, padded
with nulls. 2) A pointer into the string table if the symbol name is longer than eight
characters.

8-11 Long (1) Symbol value; storage class dependent
12-13 Short Section number of the symbol
14-15 Unsigned short Reserved

16 Char Storage class of the symbol
17 Char Number of auxiliary entries (always 0 or 1)

(1) For C6000 the type is integer.

SPRAAO8–April 2009 Common Object File Format 11
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

6.1 Special Symbols

6.2 Symbol Name Format

6.3 String Table Structure

’A’ ’d’ ’a’ ’p’

’t’ ’i’ ’e’’v’

’t’ ’e’

’−’ ’F’

’\0’’r’

’l’’i’

’f’’s’

’T’

’i’

’r’

’e’

’F’ ’o’

’o’ ’r’

’n’

’−’

’a’

’r’

’r’’u’

’m’ ’\0’

38 bytes

4 bytes

Symbol Table Structure and Content www.ti.com

The symbol table contains some special symbols that are generated by the compiler, assembler, and link
step. Each special symbol contains ordinary symbol table information as well as an auxiliary entry.
Table 17 lists these symbols.

Table 17. Special Symbols in the Symbol Table
Symbol Description
.text Address of the .text section
.data Address of the .data section
.bss Address of the .bss section
etext Next available address after the end of the .text output section
edata Next available address after the end of the .data output section
end Next available address after the end of the .bss output section

The first eight bytes of a symbol table entry (bytes 0-7) indicate a symbol's name:
• If the symbol name is eight characters or less, this field has type character. The name is padded with

nulls (if necessary) and stored in bytes 0-7.
• If the symbol name is greater than eight characters, this field is treated as two integers. The entire

symbol name is stored in the string table. Bytes 0-3 contain 0, and bytes 4-7 are an offset into the
string table.

The string table stores symbols with names longer than eight characters. The field in the symbol table
entry that would normally contain the symbol's name actually points to the symbol's name in the string
table. The string table contiguously stores names, delimited by a null byte. The first four bytes of the table
contain the table size in bytes; thus, offsets into the string table are greater than or equal to 4.

Figure 5 is a string table that contains two symbol names, Adaptive-Filter and Fourier-Transform. The
index in the string table is 4 for Adaptive-Filter and 20 for Fourier-Transform.

Figure 5. String Table Entries for Sample Symbol Names

Common Object File Format12 SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

6.4 Storage Classes

6.5 Symbol Values

6.6 Section Number

www.ti.com Symbol Table Structure and Content

Byte 16 of the symbol table entry indicates the storage class of the symbol. Storage classes refer to the
method in which the C/C++ compiler accesses a symbol. Table 18 lists valid storage classes.

Table 18. Symbol Storage Classes
Mnemonic Value Storage Class Mnemonic Value Storage Class
C_NULL 0 No storage class C_USTATIC 14 Undefined static
C_AUTO 1 Reserved C_ENTAG 15 Reserved
C_EXT 2 External definition C_MOE 16 Reserved
C_STAT 3 Static C_REGPARM 17 Reserved
C_REG 4 Reserved C_FIELD 18 Reserved
C_EXTREF 5 External reference C_UEXT (1) 19 Tentative external definition
C_LABEL 6 Label C_STATLAB (1) 20 Static load time label
C_ULABEL 7 Undefined label C_EXTLAB (1) 21 External load time label
C_MOS 8 Reserved C_VARARG (1) (2) 27 Last declared parameter of a function with a

variable number of arguments
C_ARG 9 Reserved C_BLOCK 100 Reserved
C_STRTAG 10 Reserved C_FCN 101 Reserved
C_MOU 11 Reserved C_EOS 102 Reserved
C_UNTAG 12 Reserved C_FILE 103 Reserved
C_TPDEF 13 Reserved C_LINE 104 Used only by utility programs

(1) Not applicable to C5400 or C5500
(2) Not applicable to C2800

The .text, .data, and .bss symbols are restricted to the C_STAT storage class.

Bytes 8-11 of a symbol table entry indicate a symbol's value. The C_EXT, C_STAT, and C_LABEL
storage classes hold relocatable addresses.

The value of a relocatable symbol is its virtual address. When the link step relocates a section, the value
of a relocatable symbol changes accordingly.

Bytes 12-13 of a symbol table entry contain a number that indicates in which section the symbol was
defined. Table 19 lists these numbers and the indicated sections.

Table 19. Section Numbers
Mnemonic Section Number Description
None -2 Reserved
N_ABS -1 Absolute symbol
N_UNDEF 0 Undefined external symbol
None (1) 1 .text section (typical)
None (1) 2 .data section (typical)
None (1) 3 .bss section (typical)
None (1) 4-32 767 Section number of a named section, in the order in which the named

sections are encountered
(1) For C5500 and C2800, the mnemonic is N_SCNUM

SPRAAO8–April 2009 Common Object File Format 13
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

6.7 Auxiliary Entries

Symbol Table Structure and Content www.ti.com

If there were no .text, .data, or .bss sections, the numbering of named sections would begin with 1.

If a symbol has a section number of 0, -1, or -2, it is not defined in a section. A section number of -1
indicates that the symbol has a value but is not relocatable. A section number of 0 indicates a relocatable
external symbol that is not defined in the current file.

Each symbol table entry can have one or noauxiliary entry. An auxiliary symbol table entry contains the
same number of bytes as a symbol table entry (18). Table 20 illustrates the format of auxiliary table
entries.

Table 20. Section Format for Auxiliary Table Entries
Byte Number Type Description

0-3 Long (1) Section length
4-5 Unsigned short Number of relocation entries
6-7 Unsigned short Number of line number entries

8-17 Not used (zero filled)

(1) For C6000 the type is integer.

Common Object File Format14 SPRAAO8–April 2009
Submit Documentation Feedback

http://www.go-dsp.com/forms/techdoc/doc_feedback.htm?litnum=SPRAAO8

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	1 COFF File Structure
	2 File Header Structure
	3 Optional File Header Format
	4 Section Header Structure
	5 Structuring Relocation Information
	6 Symbol Table Structure and Content
	6.1 Special Symbols
	6.2 Symbol Name Format
	6.3 String Table Structure
	6.4 Storage Classes
	6.5 Symbol Values
	6.6 Section Number
	6.7 Auxiliary Entries

