
C55x v3.x CPU
Algebraic Instruction Set

Reference Guide

Literature Number: SWPU068E
June 2009

iii

Preface

Read This First

About This Manual

The C55x™ is a fixed-point digital signal processor (DSP) in the TMS320™
DSP family, and it can use either of two forms of the instruction set: a mnemonic
form or an algebraic form. This book is a reference for the algebraic form of the
instruction set. It contains information about the instructions used for all types
of operations. For information on the mnemonic instruction set, see C55x v3.x
CPU Mnemonic Instruction Set Reference Guide, SWPU067.

This release is updated with the 3.0 Revision of the TMS320C55x DSP. Infor-
mation not affected by the revision remains identical to the previous manual.
The main new features of this revision are:

� Relaxed parallelism restrictions:

Total size of both instructions may be up to 8 bytes.

Constant buses (KAB and KDB) are no longer a source of conflict.

� New instructions:

lsmf

36 dual mac instructions with double coefficient features

MPY, MAC, and MAS instructions with unsigned coefficients

lock

Notational Conventions

iv

Notational Conventions

This book uses the following conventions.

� In syntax descriptions, the instruction is in a bold typeface. Portions of a
syntax in bold must be entered as shown. Here is an example of an
instruction syntax:

lms(Xmem, Ymem, ACx, ACy)

lms is the instruction, and it has four operands: Xmem, Ymem, ACx, and
ACy. When you use lms, the operands should be actual dual data-
memory operand values and accumulator values. A comma and a space
(optional) must separate the four values.

� Square brackets, [and], identify an optional parameter. If you use an
optional parameter, specify the information within the brackets; do not type
the brackets themselves.

Related Documentation From Texas Instruments

v

Related Documentation From Texas Instruments

The following books describe the C55x™ devices and related support tools. To
obtain a copy of any of these TI documents, call the Texas Instruments
Literature Response Center at (800) 477-8924. When ordering, please identify
the book by its title and literature number.

TMS320C55x Technical Overview (SPRU393). This overview is an
introduction to the TMS320C55x™ digital signal processor (DSP). The
TMS320C55x is the latest generation of fixed-point DSPs in the
TMS320C5000™ DSP platform. Like the previous generations, this
processor is optimized for high performance and low-power operation.
This book describes the CPU architecture, low-power enhancements,
and embedded emulation features of the TMS320C55x.

C55x CPU Reference Guide (literature number SWPU073) describes the
architecture, registers, and operation of the CPU for the TMS320C55x™
digital signal processors (DSPs).

C55x CPU Mnemonic Instruction Set Reference Guide (literature number
SWPU067) describes the mnemonic instructions individually. It also
includes a summary of the instruction set, a list of the instruction
opcodes, and a cross-reference to the algebraic instruction set.

TMS320C55x Programmer’s Guide (literature number SPRU376) describes
ways to optimize C and assembly code for the TMS320C55x™ DSPs and
explains how to write code that uses special features and instructions of
the DSP.

TMS320C55x Optimizing C Compiler User’s Guide (literature number
SPRU281) describes the TMS320C55x™ C Compiler. This C compiler
accepts ANSI standard C source code and produces assembly language
source code for TMS320C55x devices.

TMS320C55x Assembly Language Tools User’s Guide (literature number
SPRU280) describes the assembly language tools (assembler, linker,
and other tools used to develop assembly language code), assembler
directives, macros, common object file format, and symbolic debugging
directives for TMS320C55x™ devices.

Trademarks

TMS320, TMS320C54x, TMS320C55x, C54x, and C55x are trademarks of
Texas Instruments.

Related Documentation From Texas Instruments / Trademarks

vi

Contents

vii

Contents

1 Terms, Symbols, and Abbreviations 1-1.
Lists and defines the terms, symbols, and abbreviations used in the TMS320C55x DSP
algebraic instruction set summary and in the individual instruction descriptions.

1.1 Instruction Set Terms, Symbols, and Abbreviations 1-2.
1.2 Instruction Set Conditional (cond) Fields 1-7.
1.3 Affect of Status Bits 1-9.

1.3.1 Accumulator Overflow Status Bit (ACOVx) 1-9.
1.3.2 C54CM Status Bit 1-9.
1.3.3 CARRY Status Bit 1-9.
1.3.4 FRCT Status Bit 1-9.
1.3.5 INTM Status Bit 1-9.
1.3.6 M40 Status Bit 1-10.
1.3.7 RDM Status Bit 1-12.
1.3.8 SATA Status Bit 1-12.
1.3.9 SATD Status Bit 1-13.
1.3.10 SMUL Status Bit 1-13.
1.3.11 SXMD Status Bit 1-13.
1.3.12 Test Control Status Bit (TCx) 1-13.

1.4 Instruction Set Notes and Rules 1-14.
1.4.1 Notes 1-14.
1.4.2 Rules 1-14.

1.5 Nonrepeatable Instructions 1-20.

2 Parallelism Features and Rules 2-1.
Describes the parallelism features and rules of the TMS320C55x DSP algebraic instruction set.

2.1 Parallelism Features 2-2.
2.2 Parallelism Basics 2-3.
2.3 Resource Conflicts 2-4.

2.3.1 Operators 2-4.
2.3.2 Address Generation Units 2-4.
2.3.3 Buses 2-5.

2.4 Soft-Dual Parallelism 2-5.
2.4.1 Soft-Dual Parallelism of MAR Instructions 2-6.

2.5 Execute Conditionally Instructions 2-6.
2.6 Other Exceptions 2-7.

Contents

viii

3 Introduction to Addressing Modes 3-1.
Provides an introduction to the addressing modes of the TMS320C55x DSP.

3.1 Introduction to the Addressing Modes 3-2.
3.2 Absolute Addressing Modes 3-3.

3.2.1 k16 Absolute Addressing Mode 3-3.
3.2.2 k23 Absolute Addressing Mode 3-3.
3.2.3 I/O Absolute Addressing Mode 3-3.

3.3 Direct Addressing Modes 3-4.
3.3.1 DP Direct Addressing Mode 3-4.
3.3.2 SP Direct Addressing Mode 3-5.
3.3.3 Register-Bit Direct Addressing Mode 3-5.
3.3.4 PDP Direct Addressing Mode 3-5.

3.4 Indirect Addressing Modes 3-6.
3.4.1 AR Indirect Addressing Mode 3-6.
3.4.2 Dual AR Indirect Addressing Mode 3-14.
3.4.3 CDP Indirect Addressing Mode 3-16.
3.4.4 Coefficient Indirect Addressing Mode 3-19.

3.5 Circular Addressing 3-21.

4 Instruction Set Summary 4-1.
Provides a summary of the TMS320C55x DSP algebraic instruction set.

5 Instruction Set Descriptions 5-1.
Detailed information on the TMS320C55x DSP algebraic instruction set.

Absolute Distance (abdst) 5-2.
Absolute Value 5-4.
Addition 5-7.
Addition with Absolute Value 5-27.
Addition with Parallel Store Accumulator Content to Memory 5-29.
Addition or Subtraction Conditionally (adsc) 5-31.
Addition or Subtraction Conditionally with Shift (ads2c) 5-33.
Addition, Subtraction, or Move Accumulator Content Conditionally (adsc) 5-36.
Bitwise AND 5-38.
Bitwise AND Memory with Immediate Value and Compare to Zero 5-47.
Bitwise OR 5-48.
Bitwise Exclusive OR (XOR) 5-57.
Branch Conditionally (if goto) 5-66.
Branch Unconditionally (goto) 5-70.
Branch on Auxiliary Register Not Zero (if goto) 5-74.
Call Conditionally (if call) 5-77.
Call Unconditionally (call) 5-83.
Circular Addressing Qualifier (circular) 5-87.
Clear Accumulator, Auxiliary, or Temporary Register Bit 5-88.

Contents

ixContents

Clear Memory Bit 5-89.
Clear Status Register Bit 5-90.
Compare Accumulator, Auxiliary, or Temporary Register Content 5-93.
Compare Accumulator, Auxiliary, or Temporary Register Content with AND 5-95.
Compare Accumulator, Auxiliary, or Temporary Register Content with OR 5-100.
Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (max) 5-105.
Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (min) 5-108.
Compare and Branch (compare goto) 5-111.
Compare and Select Accumulator Content Maximum (max_diff) 5-114.
Compare and Select Accumulator Content Minimum (min_diff) 5-120.
Compare Memory with Immediate Value 5-126.
Complement Accumulator, Auxiliary, or Temporary Register Bit (cbit) 5-128.
Complement Accumulator, Auxiliary, or Temporary Register Content 5-129.
Complement Memory Bit (cbit) 5-130.
Compute Exponent of Accumulator Content (exp) 5-131.
Compute Mantissa and Exponent of Accumulator Content (mant, exp) 5-132.
Count Accumulator Bits (count) 5-134.
Dual 16-Bit Additions 5-135.
Dual 16-Bit Addition and Subtraction 5-140.
Dual 16-Bit Subtractions 5-145.
Dual 16-Bit Subtraction and Addition 5-154.
Execute Conditionally (if execute) 5-159.
Expand Accumulator Bit Field (field_expand) 5-166.
Extract Accumulator Bit Field (field_extract) 5-167.
Finite Impulse Response Filter, Antisymmetrical (firsn) 5-168.
Finite Impulse Response Filter, Symmetrical (firs) 5-170.
Idle 5-172.
Least Mean Square (lms) 5-173.
Least Mean Square (lmsf) 5-175.
Linear Addressing Qualifier (linear) 5-179.
Load Accumulator from Memory 5-180.
Load Accumulator from Memory with Parallel Store Accumulator Content to Memory 5-189. . . .
Load Accumulator Pair from Memory 5-191.
Load Accumulator with Immediate Value 5-196.
Load Accumulator, Auxiliary, or Temporary Register from Memory 5-199.
Load Accumulator, Auxiliary, or Temporary Register with Immediate Value 5-205.
Load Auxiliary or Temporary Register Pair from Memory 5-209.
Load CPU Register from Memory 5-210.
Load CPU Register with Immediate Value 5-213.
Load Extended Auxiliary Register from Memory 5-215.
Load Extended Auxiliary Register with Immediate Value 5-216.
Load Memory with Immediate Value 5-217.
Lock Access Qualifier 5-218.
Memory Delay (delay) 5-220.

Contents

x

Memory-Mapped Register Access Qualifier (mmap) 5-221.
Modify Auxiliary Register Content (mar) 5-222.
Modify Auxiliary Register Content with Parallel Multiply 5-224.
Modify Auxiliary Register Content with Parallel Multiply and Accumulate 5-226.
Modify Auxiliary Register Content with Parallel Multiply and Subtract 5-231.
Modify Auxiliary or Temporary Register Content (mar) 5-233.
Modify Auxiliary or Temporary Register Content by Addition (mar) 5-237.
Modify Auxiliary or Temporary Register Content by Subtraction (mar) 5-241.
Modify Data Stack Pointer 5-245.
Modify Extended Auxiliary Register Content (mar) 5-246.
Modify Extended Auxiliary Register Content by Addition (mar) 5-249.
Modify Extended Auxiliary Register Content by Subtraction (mar) 5-251.
Move Accumulator Content to Auxiliary or Temporary Register 5-253.
Move Accumulator, Auxiliary, or Temporary Register Content 5-254.
Move Auxiliary or Temporary Register Content to Accumulator 5-256.
Move Auxiliary or Temporary Register Content to CPU Register 5-257.
Move CPU Register Content to Auxiliary or Temporary Register 5-259.
Move Extended Auxiliary Register Content 5-261.
Move Memory to Memory 5-262.
Multiply 5-269.
Multiply with Parallel Multiply and Accumulate 5-283.
Multiply with Parallel Multiply and Subtract 5-295.
Multiply with Parallel Store Accumulator Content to Memory 5-305.
Multiply and Accumulate (MAC) 5-308.
Multiply and Accumulate with Parallel Delay 5-325.
Multiply and Accumulate with Parallel Load Accumulator from Memory 5-327.
Multiply and Accumulate with Parallel Multiply 5-329.
Multiply and Accumulate with Parallel Multiply and Subtract 5-347.
Multiply and Accumulate with Parallel Store Accumulator Content to Memory 5-367.
Multiply and Subtract 5-369.
Multiply and Subtract with Parallel Load Accumulator from Memory 5-379.
Multiply and Subtract with Parallel Multiply 5-381.
Multiply and Subtract with Parallel Multiply and Accumulate 5-390.
Multiply and Subtract with Parallel Store Accumulator Content to Memory 5-401.
Negate Accumulator, Auxiliary, or Temporary Register Content 5-403.
No Operation (nop) 5-405.
Parallel Modify Auxiliary Register Contents (mar) 5-406.
Parallel Multiplies 5-407.
Parallel Multiply and Accumulates 5-419.
Parallel Multiply and Subtracts 5-454.
Peripheral Port Register Access Qualifiers 5-466.
Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers (popboth) 5-468.
Pop Top of Stack (pop) 5-469.
Push Accumulator or Extended Auxiliary Register Content to Stack Pointers (pshboth) 5-476. .

Contents

xiContents

Push to Top of Stack (push) 5-477.
Repeat Block of Instructions Unconditionally 5-484.
Repeat Single Instruction Conditionally (while/repeat) 5-495.
Repeat Single Instruction Unconditionally (repeat) 5-498.
Repeat Single Instruction Unconditionally and Decrement CSR (repeat) 5-503.
Repeat Single Instruction Unconditionally and Increment CSR (repeat) 5-505.
Return Conditionally (if return) 5-508.
Return Unconditionally (return) 5-510.
Return from Interrupt (return_int) 5-512.
Rotate Left Accumulator, Auxiliary, or Temporary Register Content 5-514.
Rotate Right Accumulator, Auxiliary, or Temporary Register Content 5-516.
Round Accumulator Content (rnd) 5-518.
Saturate Accumulator Content (saturate) 5-520.
Set Accumulator, Auxiliary, or Temporary Register Bit 5-522.
Set Memory Bit 5-523.
Set Status Register Bit 5-524.
Shift Accumulator Content Conditionally (sftc) 5-527.
Shift Accumulator Content Logically 5-529.
Shift Accumulator, Auxiliary, or Temporary Register Content Logically 5-532.
Signed Shift of Accumulator Content 5-535.
Signed Shift of Accumulator, Auxiliary, or Temporary Register Content 5-544.
Software Interrupt (intr) 5-549.
Software Reset (reset) 5-551.
Software Trap (trap) 5-555.
Square 5-557.
Square and Accumulate 5-560.
Square and Subtract 5-563.
Square Distance (sqdst) 5-566.
Store Accumulator Content to Memory 5-568.
Store Accumulator Pair Content to Memory 5-588.
Store Accumulator, Auxiliary, or Temporary Register Content to Memory 5-591.
Store Auxiliary or Temporary Register Pair Content to Memory 5-595.
Store CPU Register Content to Memory 5-596.
Store Extended Auxiliary Register Content to Memory 5-600.
Subtract Conditionally (subc) 5-601.
Subtraction 5-603.
Subtraction with Parallel Store Accumulator Content to Memory 5-627.
Swap Accumulator Content (swap) 5-629.
Swap Accumulator Pair Content (swap) 5-630.
Swap Auxiliary Register Content (swap) 5-631.
Swap Auxiliary Register Pair Content (swap) 5-632.
Swap Auxiliary and Temporary Register Content (swap) 5-633.
Swap Auxiliary and Temporary Register Pair Content (swap) 5-635.
Swap Auxiliary and Temporary Register Pairs Content (swap) 5-637.

Contents

xii

Swap Temporary Register Content (swap) 5-639.
Swap Temporary Register Pair Content (swap) 5-640.
Test Accumulator, Auxiliary, or Temporary Register Bit 5-641.
Test Accumulator, Auxiliary, or Temporary Register Bit Pair 5-643.
Test Memory Bit 5-645.
Test and Clear Memory Bit 5-648.
Test and Complement Memory Bit 5-649.
Test and Set Memory Bit 5-650.

6 Instruction Opcodes in Sequential Order 6-1.
The opcode in sequential order for each TMS320C55x DSP instruction syntax.

6.1 Instruction Set Opcodes 6-2.
6.2 Instruction Set Opcode Symbols and Abbreviations 6-19.

7 Cross-Reference of Algebraic and Mnemonic Instruction Sets 7-1.
Cross-Reference of TMS320C55x DSP Algebraic and Mnemonic Instruction Sets.

8 Index Index-1.

Figures

xiiiContents

Figures

5−1 Status Registers Bit Mapping 5-92 .
5−2 Legal Uses of Repeat Block of Instructions Unconditionally (localrepeat)

Instruction 5-488 .
5−3 Status Registers Bit Mapping 5-526 .
5−4 Effects of a Software Reset on Status Registers 5-554 .

Tables

1−1 Instruction Set Terms, Symbols, and Abbreviations 1-2 .
1−2 Operators Used in Instruction Set 1-6 .
1−3 Instruction Set Conditional (cond) Field 1-7 .
1−4 Nonrepeatable Instructions 1-20 .
3−1 Addressing-Mode Operands 3-2 .
3−2 Absolute Addressing Modes 3-3 .
3−3 Direct Addressing Modes 3-4 .
3−4 Indirect Addressing Modes 3-6 .
3−5 DSP Mode Operands for the AR Indirect Addressing Mode 3-8 .
3−6 Control Mode Operands for the AR Indirect Addressing Mode 3-12 .
3−7 Dual AR Indirect Operands 3-15 .
3−8 CDP Indirect Operands 3-17 .
3−9 Coefficient Indirect Operands 3-20 .
3−10 Circular Addressing Pointers 3-21 .
4−1 Algebraic Instruction Set Summary 4-3 .
5−1 Opcodes for Load CPU Register from Memory Instruction 5-212 .
5−2 Opcodes for Load CPU Register with Immediate Value Instruction 5-214
5−3 Opcodes for Move Auxiliary or Temporary Register Content to CPU Register

Instruction 5-258 .
5−4 Opcodes for Move CPU Register Content to Auxiliary or Temporary Register

Instruction 5-260 .
5−5 Effects of a Software Reset on DSP Registers 5-552 .
5−6 Opcodes for Store CPU Register Content to Memory Instruction 5-599
6−1 Instruction Set Opcodes 6-2 .
6−2 Instruction Set Opcode Symbols and Abbreviations 6-19 .
7−1 Cross-Reference of Algebraic and Mnemonic Instruction Sets 7-2 .

xiv

1-1

Terms, Symbols, and Abbreviations

This chapter lists and defines the terms, symbols, and abbreviations used in
the TMS320C55x™ DSP algebraic instruction set summary and in the
individual instruction descriptions. Also provided are instruction set notes and
rules and a list of nonrepeatable instructions.

Topic Page

1.1 Instruction Set Terms, Symbols, and Abbreviations 1-2.

1.2 Instruction Set Conditional (cond) Fields 1-7.

1.3 Affect of Status Bits 1-9.

1.4 Instruction Set Notes and Rules 1-14.

1.5 Nonrepeatable Instructions 1-20.

Chapter 1

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-2 SWPU068E

1.1 Instruction Set Terms, Symbols, and Abbreviations

Table 1−1 lists the terms, symbols, and abbreviations used and Table 1−2 lists
the operators used in the instruction set summary and in the individual instruc-
tion descriptions.

Table 1−1. Instruction Set Terms, Symbols, and Abbreviations

Symbol Meaning

[] Optional operands

ACB Bus that brings D-unit registers to A-unit and P-unit operators

ACOVx Accumulator overflow status bit:
ACOV0, ACOV1, ACOV2, ACOV3

ACw, ACx,
ACy, ACz

Accumulator:
AC0, AC1, AC2, AC3

ARn_mod Content of selected auxiliary register (ARn) is premodified or postmodified in the address
generation unit.

ARx, ARy Auxiliary register:
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7

AU A unit

Baddr Register bit address

BitIn Shifted bit in:
Test control flag 2 (TC2) or CARRY status bit

BitOut Shifted bit out:
Test control flag 2 (TC2) or CARRY status bit

BORROW Logical complement of CARRY status bit

C, Cycles Execution in cycles. For conditional instructions, x/y field means:
x cycle, if the condition is true.
y cycle, if the condition is false.

CA Coefficient address generation unit

CARRY Value of CARRY status bit

Cmem Coefficient indirect operand referencing a 16-bit or 32-bit value in data space

cond Condition based on accumulator value (ACx), auxiliary register (ARx) value, temporary
register (Tx) value, test control (TCx) flag, or CARRY status bit. See section 1.2.

CR Coefficient Read bus

CSR Computed single-repeat register

Instruction Set Terms, Symbols, and Abbreviations

1-3Terms, Symbols, and AbbreviationsSWPU068E

Table 1−1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

DA Data address generation unit

DR Data Read bus

dst Destination accumulator (ACx), lower 16 bits of auxiliary register (ARx), or temporary
register (Tx):
AC0, AC1, AC2, AC3
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

DU D unit

DW Data Write bus

Dx Data address label coded on x bits (absolute address)

E Indicates if the instruction contains a parallel enable bit.

kx Unsigned constant coded on x bits

Kx Signed constant coded on x bits

Lmem Long-word single data memory access (32-bit data access). Same legal inputs as Smem.

lx Program address label coded on x bits (unsigned offset relative to program counter
register)

Lx Program address label coded on x bits (signed offset relative to program counter register)

M40 If the optional M40 keyword is applied to the instruction, the instruction provides the option
to locally set M40 to 1 for the execution of the instruction

Operator Operator(s) used by an instruction.

Pipe, Pipeline Pipeline phase in which the instruction executes:
AD Address
D Decode
R Read
X Execute

Px Program or data address label coded on x bits (absolute address)

RELOP Relational operators:

== equal to
< less than
>= greater than or equal to
!= not equal to

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-4 SWPU068E

Table 1−1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

rnd If the optional rnd keyword is applied to the instruction, rounding is performed in the
instruction

RPTC Single-repeat counter register

S, Size Instruction size in bytes.

SA Stack address generation unit

saturate If the optional saturate keyword is applied to the input operand, the 40-bit output of the
operation is saturated

SHFT 4-bit immediate shift value, 0 to 15

SHIFTW 6-bit immediate shift value, −32 to +31

Smem Word single data memory access (16-bit data access)

SP Data stack pointer

src Source accumulator (ACx), lower 16 bits of auxiliary register (ARx), or temporary register
(Tx):
AC0, AC1, AC2, AC3
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

SSP System stack pointer

STx Status register:
ST0, ST1, ST2, ST3

TAx, TAy Auxiliary register (ARx) or temporary register (Tx):
AR0, AR1, AR2, AR3, AR4, AR5, AR6, AR7
T0, T1, T2, T3

TCx, TCy Test control flag:
TC1, TC2

TRNx Transition register:
TRN0, TRN1

Tx, Ty Temporary register (Tx):
T0, T1, T2, T3

uns If the optional uns keyword is applied to the input operand, the operand is zero extended

XACdst Destination extended register: All 23 bits of coefficient data pointer (XCDP), and extended
auxiliary register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

Instruction Set Terms, Symbols, and Abbreviations

1-5Terms, Symbols, and AbbreviationsSWPU068E

Table 1−1. Instruction Set Terms, Symbols, and Abbreviations (Continued)

Symbol Meaning

XACsrc Source extended register: All 23 bits of coefficient data pointer (XCDP), and extended
auxiliary register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

XAdst Destination extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), and data page pointer (XDP)

XARx All 23 bits of extended auxiliary register:
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

XAsrc Source extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), and data page pointer (XDP)

xdst Accumulator:
AC0, AC1, AC2, AC3

Destination extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

xsrc Accumulator:
AC0, AC1, AC2, AC3

Source extended register: All 23 bits of data stack pointer (XSP), system stack pointer
(XSSP), data page pointer (XDP), coefficient data pointer (XCDP), and extended auxiliary
register (XARx):
XAR0, XAR1, XAR2, XAR3, XAR4, XAR5, XAR6, XAR7

Xmem, Ymem Indirect dual data memory access (two data accesses)

Instruction Set Terms, Symbols, and Abbreviations

Terms, Symbols, and Abbreviations1-6 SWPU068E

Table 1−2. Operators Used in Instruction Set

Symbols Operators Evaluation

+ − ~ Unary plus, minus, 1s complement Right to left

* / % Multiplication, division, modulo Left to right

+ − Addition, subtraction Left to right

<< >> Signed left shift, right shift Left to right

< < < >>> Logical left shift, logical right shift Left to right

< <= Less than, less than or equal to Left to right

> >= Greater than, greater than or equal to Left to right

== != Equal to, not equal to Left to right

& Bitwise AND Left to right

| Bitwise OR Left to right

^ Bitwise exclusive OR (XOR) Left to right

Note: Unary +, −, and * have higher precedence than the binary forms.

Instruction Set Conditional (cond) Fields

1-7Terms, Symbols, and AbbreviationsSWPU068E

1.2 Instruction Set Conditional (cond) Fields

Table 1−3 lists the testing conditions available in the cond field of the conditional
instructions.

Table 1−3. Instruction Set Conditional (cond) Field

Bit or Register Condition (cond) Field For Condition to be True ...

Accumulator Tests the accumulator (ACx) content against 0. The comparison against 0
depends on M40 status bit:

� If M40 = 0, ACx(31–0) is compared to 0.

� If M40 = 1, ACx(39–0) is compared to 0.

ACx == #0 ACx content is equal to 0

ACx < #0 ACx content is less than 0

ACx > #0 ACx content is greater than 0

ACx != #0 ACx content is not equal to 0

ACx <= #0 ACx content is less than or equal to 0

ACx >= #0 ACx content is greater than or equal to 0

Accumulator Overflow
Status Bit

Tests the accumulator overflow status bit (ACOVx) against 1; when the
optional ! symbol is used before the bit designation, the bit can be tested
against 0. When this condition is used, the corresponding ACOVx is
cleared to 0.

overflow(ACx) ACOVx bit is set to 1

!overflow(ACx) ACOVx bit is cleared to 0

Auxiliary Register Tests the auxiliary register (ARx) content against 0.

ARx == #0 ARx content is equal to 0

ARx < #0 ARx content is less than 0

ARx > #0 ARx content is greater than 0

ARx != #0 ARx content is not equal to 0

ARx <= #0 ARx content is less than or equal to 0

ARx >= #0 ARx content is greater than or equal to 0

CARRY Status Bit Tests the CARRY status bit against 1; when the optional ! symbol is used
before the bit designation, the bit can be tested against 0.

CARRY CARRY bit is set to 1

!CARRY CARRY bit is cleared to 0

Instruction Set Conditional (cond) Fields

Terms, Symbols, and Abbreviations1-8 SWPU068E

Table 1−3. Instruction Set Conditional (cond) Field (Continued)

Bit or Register For Condition to be True ...Condition (cond) Field

Temporary Register Tests the temporary register (Tx) content against 0.

Tx == #0 Tx content is equal to 0

Tx < #0 Tx content is less than 0

Tx > #0 Tx content is greater than 0

Tx != #0 Tx content is not equal to 0

Tx <= #0 Tx content is less than or equal to 0

Tx >= #0 Tx content is greater than or equal to 0

Test Control Flags Tests the test control flags (TC1 and TC2) independently against 1; when
the optional ! symbol is used before the flag designation, the flag can be
tested independently against 0.

TCx TCx flag is set to 1

!TCx TCx flag is cleared to 0

TC1 and TC2 can be combined with an AND (&), OR (|), and XOR (^)
logical bit combinations:

TC1 & TC2 TC1 AND TC2 is equal to 1

!TC1 & TC2 TC1 AND TC2 is equal to 1

TC1 & !TC2 TC1 AND TC2 is equal to 1

!TC1 & !TC2 TC1 AND TC2 is equal to 1

TC1 | TC2 TC1 OR TC2 is equal to 1

!TC1 | TC2 TC1 OR TC2 is equal to 1

TC1 | !TC2 TC1 OR TC2 is equal to 1

!TC1 | !TC2 TC1 OR TC2 is equal to 1

TC1 ^ TC2 TC1 XOR TC2 is equal to 1

!TC1 ^ TC2 TC1 XOR TC2 is equal to 1

TC1 ^ !TC2 TC1 XOR TC2 is equal to 1

!TC1 ^ !TC2 TC1 XOR TC2 is equal to 1

Affect of Status Bits

1-9Terms, Symbols, and AbbreviationsSWPU068E

1.3 Affect of Status Bits

1.3.1 Accumulator Overflow Status Bit (ACOVx)

The ACOV[0−3] depends on M40:

� When M40 = 0, overflow is detected at bit position 31

� When M40 = 1, overflow is detected at bit position 39

If an overflow is detected, the destination accumulator overflow status bit is set
to 1.

1.3.2 C54CM Status Bit

� When C54CM = 0, the enhanced mode, the CPU supports code originally
developed for a TMS320C55x™ DSP.

� When C54CM = 1, the compatible mode, all the C55x CPU resources
remain available; therefore, as you translate code, you can take advan-
tage of the additional features on the C55x DSP to optimize your code.
This mode must be set when you are porting code that was originally
developed for a TMS320C54x™ DSP.

1.3.3 CARRY Status Bit

� When M40 = 0, the carry/borrow is detected at bit position 31

� When M40 = 1, the carry/borrow is detected at bit position 39

When performing a logical shift or signed shift that affects the CARRY status
bit and the shift count is zero, the CARRY status bit is cleared to 0.

1.3.4 FRCT Status Bit

� When FRCT = 0, the fractional mode is OFF and results of multiply opera-
tions are not shifted.

� When FRCT = 1, the fractional mode is ON and results of multiply opera-
tions are shifted left by 1 bit to eliminate an extra sign bit.

1.3.5 INTM Status Bit

The INTM bit globally enables or disables the maskable interrupts. This bit has
no effect on nonmaskable interrupts (those that cannot be blocked by software).

� When INTM = 0, all unmasked interrupts are enabled.

� When INTM = 1, all maskable interrupts are disabled.

Affect of Status Bits

Terms, Symbols, and Abbreviations1-10 SWPU068E

1.3.6 M40 Status Bit

� When M40 = 0:

� overflow is detected at bit position 31

� the carry/borrow is detected at bit position 31

� saturation values are 00 7FFF FFFFh (positive overflow) or
FF 8000 0000h (negative overflow)

� TMS320C54x™ DSP compatibility mode

� for conditional instructions, the comparison against 0 (zero) is
performed on 32 bits, ACx(31−0)

� When M40 = 1:

� overflow is detected at bit position 39

� the carry/borrow is detected at bit position 39

� saturation values are 7F FFFF FFFFh (positive overflow) or
80 0000 0000h (negative overflow)

� for conditional instructions, the comparison against 0 (zero) is
performed on 40 bits, ACx(39−0)

1.3.6.1 M40 Status Bit When Sign Shifting

In D-unit shifter:

� When shifting to the LSBs:

� when M40 = 0, the input to the shifter is modified according to SXMD
and then the modified input is shifted according to the shift quantity:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the
guard bits (39−32) as the input, instead of ACx(39−32), to the
shifter

� bit 39 is extended according to SXMD

� the shifted-out bit is extracted at bit position 0

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� if M40 = 0, the shifted-out bit is extracted at bit position 31

� if M40 = 1, the shifted-out bit is extracted at bit position 39

Affect of Status Bits

1-11Terms, Symbols, and AbbreviationsSWPU068E

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVx bit is set)

� the carry/borrow is detected at bit position 31

� if SATD = 1, when an overflow is detected, ACx saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow)

� TMS320C54x™ DSP compatibility mode

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVx bit is set)

� the carry/borrow is detected at bit position 39

� if SATD = 1, when an overflow is detected, ACx saturation values are
7F FFFF FFFFh (positive overflow) or 80 0000 0000h (negative
overflow)

In A-unit ALU:

� When shifting to the LSBs, bit 15 is sign extended

� When shifting to the MSBs, 0 is inserted at bit position 0

� After shifting, unless otherwise noted:

� overflow is detected at bit position 15 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATA = 1, when an overflow is detected, register saturation values
are 7FFFh (positive overflow) or 8000h (negative overflow)

1.3.6.2 M40 Status Bit When Logically Shifting

In D-unit shifter:

� When shifting to the LSBs:

� if M40 = 0, 0 is inserted at bit position 31 and the guard bits (39−32) of
the destination accumulator are cleared

� if M40 = 1, 0 is inserted at bit position 39

� the shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit

Affect of Status Bits

Terms, Symbols, and Abbreviations1-12 SWPU068E

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� if M40 = 0, the shifted-out bit is extracted at bit position 31 and stored in
the CARRY status bit, and the guard bits (39−32) of the destination
accumulator are cleared

� if M40 = 1, the shifted-out bit is extracted at bit position 39 and stored in
the CARRY status bit

In A-unit ALU:

� When shifting to the LSBs:

� 0 is inserted at bit position 15

� the shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit

� When shifting to the MSBs:

� 0 is inserted at bit position 0

� the shifted-out bit is extracted at bit position 15 and stored in the
CARRY status bit

1.3.7 RDM Status Bit

When the optional rnd or R keyword is applied to the instruction, then rounding
is performed in the D-unit shifter. This is done according to RDM:

� When RDM = 0, the biased rounding to the infinite is performed. 8000h
(215) is added to the 40-bit result of the shift result.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit result of the shift result,
8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit result of the shift result.

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit result of the shift result.

If a rounding has been performed, the 16 lowest bits of the result are cleared
to 0.

1.3.8 SATA Status Bit

This status bit controls operations performed in the A unit.

� When SATA = 0, no saturation is performed.

� When SATA = 1 and an overflow is detected, the destination register is
saturated to 7FFFh (positive overflow) or 8000h (negative overflow).

Affect of Status Bits

1-13Terms, Symbols, and AbbreviationsSWPU068E

1.3.9 SATD Status Bit

This status bit controls operations performed in the D unit.

� When SATD = 0, no saturation is performed.

� When SATD = 1 and an overflow is detected, the destination register is
saturated.

1.3.10 SMUL Status Bit

� When SMUL = 0, the saturation mode is OFF.

� When SMUL = 1, the saturation mode is ON. When SMUL = 1, FRCT = 1,
and SATD = 1, the result of 18000h × 18000h is saturated to
00 7FFF FFFFh (regardless of the value of the M40 bit). This forces the
product of the two negative numbers to be a positive number. For multiply-
and-accumulate/subtract instructions, the saturation is performed after
the multiplication and before the addition/subtraction.

1.3.11 SXMD Status Bit

This status bit controls operations performed in the D unit.

� When SXMD = 0, input operands are zero extended.

� When SXMD = 1, input operands are sign extended.

1.3.12 Test Control Status Bit (TCx)

The test/control status bits (TC1 or TC2) hold the result of a test performed by
the instruction.

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-14 SWPU068E

1.4 Instruction Set Notes and Rules

1.4.1 Notes

� Algebraic syntax keywords and operand modifiers are case insensitive.
You can write:

abdst(*AR0, *ar1, AC0, ac1)

or

aBdST(*ar0, *aR1, aC0, Ac1)

� Operands for commutative operations (+, *, &, |, ^) can be arranged in any
order.

� Expression qualifiers can be specified in any order. For example, these
two instructions are equivalent:

AC0 = m40(rnd(uns(*AR0) * uns(*AR1)))

AC0 = rnd(m40(uns(*AR0) * uns(*AR1)))

� Algebraic instructions must use parenthesis in the exact form shown in the
instruction set. For example, this instruction is legal:

AC0 = AC0 + (AC1 << T0)

while both of these instructions are illegal:

AC0 = AC0 + ((AC1 << T0))

AC0 = AC0 + AC1 << T0

1.4.2 Rules

� Simple instructions are not allowed to span multiple lines. One exception,
single instructions that use the “,” notation to imply parallelism. These
instructions may be split up following the “,” notation.

The following example shows a single instruction (dual multiply) occupy-
ing two lines:

ACx = m40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = m40(rnd(uns(Ymem) * uns(coef(Cmem))))

� User-defined parallelism instructions (using || notation) are allowed to
span multiple lines. For example, all of the following instructions are legal:

AC0 = AC1 || AC2 = AC3

AC0 = AC1 ||
AC2 = AC3

AC0 = AC1
|| AC2 = AC3

AC0 = AC1
||
AC2 = AC3

Instruction Set Notes and Rules

1-15Terms, Symbols, and AbbreviationsSWPU068E

� The block repeat syntax uses braces to delimit the block that is to be
repeated:

blockrepeat {
 instr
 instr
 :
 instr
 }

localrepeat {
 instr
 instr
 :
 instr
 }

The left opening brace must appear on the same line as the repeat
keyword. The right closing brace must appear alone on a line (trailing
comments allowed).

Note that a label placed just inside the closing brace of the loop is effective-
ly outside the loop. The following two code sequences are equivalent:

localrepeat {
 instr1
 instr2
 Label:
 }
 instr3

and

localrepeat {
 instr1
 instr2
 }
 Label:
 instr3

A label is the address of the first construct following the label that gets
assembled into code in the object file. A closing brace does not generate
any code and so the label marks the address of the first instruction that
generates code, that is, instr3.

In this example, “goto Label” exits the loop, which is somewhat unintuitive:

localrepeat {
 goto Label
 instr2
 Label:
 }
 instr3

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-16 SWPU068E

1.4.2.1 Reserved Words

Register names and algebraic syntax keywords are reserved. They may not
be used as names of identifiers, labels, etc.

1.4.2.2 Literal and Address Operands

Literals in the algebraic strings are denoted as K or k fields. In the Smem
address modes that require an offset, the offset is also a literal (K16 or k3). 8-bit
and 16-bit literals are allowed to be linktime-relocatable; for other literals, the
value must be known at assembly time.

Addresses are the elements of the algebraic strings denoted by P, L, and l.
Further, 16-bit and 24-bit absolute address Smem modes are addresses, as
is the dma Smem mode, denoted by the ‘@’ syntax. Addresses may be assem-
bly-time constants or symbolic linktime-known constants or expressions.

Both literals and addresses follow syntax rule 1. For addresses only, rules 2
and 3 also apply.

Rule 1

A valid address or literal is a # followed by one of the following:

� a number (#123)

� an identifier (#FOO)

� a parenthesized expression (#(FOO + 2))

Note that # is not used inside the expression.

Rule 2

When an address is used in a dma, the address does not need to have a lead-
ing #, be it a number, a symbol or an expression. These are all legal:

@#123

@123

@#foo

@foo

@#(foo+2)

@(foo+2)

Instruction Set Notes and Rules

1-17Terms, Symbols, and AbbreviationsSWPU068E

Rule 3

When used in contexts other than dma (such as branch targets or Smem-
absolute address), addresses generally need a leading #. As a convenience,
the # may be omitted in front of an identifier. These are all legal:

Branch Absolute Address
goto #123 *(#123)

goto #foo *(#foo)

goto foo *(foo)

goto #(foo+2) *(#(foo+2))

These are illegal:

goto 123 *(123)

goto (foo+2) *((foo+2))

1.4.2.3 Memory Operands

� Syntax of Smem is the same as that of Lmem or Baddr.

� In the following instruction syntaxes, Smem cannot reference to a
memory-mapped register (MMR). No instruction can access a byte within
a memory-mapped register. If Smem is an MMR in one of the following
syntaxes, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

dst = uns(high_byte(Smem))

dst = uns(low_byte(Smem))

ACx = low_byte(Smem) << #SHIFTW

ACx = high_byte(Smem) << #SHIFTW

high_byte(Smem) = src

low_byte(Smem) = src

� Syntax of Xmem is the same as that of Ymem.

� Syntax of coefficient operands, Cmem:

*CDP

*CDP+

*CDP−

*(CDP + T0), when C54CM = 0
*(CDP + AR0), when C54CM = 1

When an instruction uses a Cmem operand with paralleled instructions,
the pointer modification of the Cmem operand must be the same for both
instructions of the paralleled pair or the assembler generates an error. For
example:

AC0 = AC0 + (*AR2+ * coef(*CDP+)),
AC1 = AC1 + (*AR3+ * coef(*CDP+))

Instruction Set Notes and Rules

Terms, Symbols, and Abbreviations1-18 SWPU068E

� An optional mmr prefix is allowed to be specified for indirect memory
operands, for example, mmr(*AR0). This is an assertion by you that this
is an access to a memory-mapped register. The assembler checks wheth-
er such access is legal in given circumstances.

The mmr prefix is supported for Xmem, Ymem, indirect Smem, indirect
Lmem, and Cmem operands. It is not supported for direct memory
operands; it is expected that an explicit mmap() parallel instruction is used
in conjunction with direct memory operands to indicate MMR access.

Note that the mmr prefix is part of the syntax. It is an implementation
restriction that mmr cannot exchange positions with other prefixes around
the memory operand, such as dbl or uns. If several prefixes are specified,
mmr must be the innermost prefix. Thus, uns(mmr(*AR0)) is legal, but
mmr(uns(*AR0)) is not legal.

� The following indirect operands cannot be used for accesses to I/O
space. An instruction using one of these operands requires a 2-byte exten-
sion for the constant. This extension would prevent the use of the port()
qualifier needed to indicate an I/O-space access.

*ARn(#K16)

*+ARn(#K16)

*CDP(#K16)

*+CDP(#K16)

Also, the following instructions that include the delay operation cannot be
used for accesses to I/O space:

delay(Smem)

ACx = rnd(ACx + (Smem * coef(Cmem))) [,T3 = Smem],
delay(Smem)

Any illegal access to I/O space will generate a hardware bus-error
interrupt (BERRINT) to be handled by the CPU.

1.4.2.4 Operand Modifiers

Operand modifiers look like function calls on operands. Note that uns is an
operand modifier and an instruction modifier meaning unsigned. The operand
modifier uns is used when the operand is modified on the way to the rest of the
operation (multiply-and-accumulate). The instruction modifier uns is used
when the whole operation is affected (multiply, register compare, compare and
branch).

Instruction Set Notes and Rules

1-19Terms, Symbols, and AbbreviationsSWPU068E

Modifier Meaning

dbl Access a true 32-bit memory operand

dual Access a 32-bit memory operand for use as two
independent 16-bit halves of the given operation

HI Access upper 16 bits of the accumulator

high_byte Access the high byte of the memory location

LO Access lower 16 bits of the accumulator

low_byte Access the low byte of the memory location

pair Dual register access

rnd Round

saturate Saturate

uns Unsigned operand

When an instruction uses a Cmem operand with paralleled instructions and
the Cmem operand is defined as unsigned (uns), both Cmem operands of the
paralleled pair must be defined as unsigned (and reciprocally).

When an instruction uses both Xmem and Ymem operands with paralleled
instructions and the Xmem operand is defined as unsigned (uns), Ymem
operand must also be defined as unsigned (and reciprocally).

1.4.2.5 Operator Syntax Rules

Instructions that read and write the same operand can also be written in
op-assign form. For example:

AC0 = AC0 + *AR4

can also be written:

AC0 += *AR4

This form is supported for these operations: +=, −=, &=, |=, ^=

Note that in certain instances use of op-assign notation results in ambiguous
algebraic assembly. This happens if the op-assign operator is not delimited by
white space, for example:

*AR0+=#4 is ambiguous, is it *AR0 += #4 or *AR0+ = #4 ?

The assembler always parses adjacent += as plus-assign; therefore, this
instructions is parsed as *AR0 += #4.

*AR0+=*AR1 is ambiguous, is it *AR0 += *AR1 or *AR0+ =*AR1 ?

Once again, the first form, *AR0 += *AR1, is used. This is not a valid instruc-
tion −− an error is printed.

Nonrepeatable Instructions

Terms, Symbols, and Abbreviations1-20 SWPU068E

1.5 Nonrepeatable Instructions

Table 1−4 lists the instructions that cannot be used in a repeatable instruction.

Table 1−4. Nonrepeatable Instructions

Instruction Description Algebraic Syntax That Cannot Be Repeated

Branch Conditionally if (cond) goto l4

if (cond) goto L8

if (cond) goto L16

if (cond) goto P24

Branch Unconditionally goto ACx

goto L7

goto L16

goto P24

Branch on Auxiliary Register Not Zero if (ARn_mod != #0) goto L16

Call Conditionally if (cond) call L16

if (cond) call P24

Call Unconditionally call ACx

call L16

call P24

Clear Status Register Bit bit(STx, k4) = #0

Compare and Branch compare (uns(src RELOP K8)) goto L8

Execute Conditionally if (cond) execute(AD_Unit)

if (cond) execute(D_Unit)

Idle idle

Load CPU Register from Memory DP = Smem

RETA = dbl(Lmem)

Load CPU Register with Immediate Value DP = k16

Move CPU Register Content to Auxiliary or
Temporary Register

TAx = RPTC

Repeat Block of Instructions Unconditionally localrepeat{}

blockrepeat{}

Repeat Single Instruction Conditionally while (cond && (RPTC < k8)) repeat

Nonrepeatable Instructions

1-21Terms, Symbols, and AbbreviationsSWPU068E

Table 1−4. Nonrepeatable Instructions (Continued)

Instruction Description Algebraic Syntax That Cannot Be Repeated

Repeat Single Instruction Unconditionally repeat(k8)

repeat(k16)

repeat(CSR)

Repeat Single Instruction Unconditionally and
Decrement CSR

repeat(CSR), CSR –= k4

Repeat Single Instruction Unconditionally and
Increment CSR

repeat(CSR), CSR += TAx

repeat(CSR), CSR += k4

Return Conditionally if (cond) return

Return Unconditionally return

Return from Interrupt return_int

Round Accumulator Content ACy = rnd(ACx)

Set Status Register Bit bit(STx, k4) = #1

Software Interrupt intr(k5)

Software Reset reset

Software Trap trap(k5)

Store CPU Register Content to Memory dbl(Lmem) = RETA

Terms, Symbols, and Abbreviations1-22 SWPU068E

2-1

Parallelism Features and Rules

This chapter describes the parallelism features and rules of the
TMS320C55x™ DSP algebraic instruction set.

Topic Page

2.1 Parallelism Features 2-2.

2.2 Parallelism Basics 2-3.

2.3 Resource Conflicts 2-4.

2.4 Soft-Dual Parallelism 2-5.

2.5 Execute Conditionally Instructions 2-6.

2.6 Other Exceptions 2-7.

Chapter 2

Parallelism Features

Parallelism Features and Rules2-2 SWPU068E

2.1 Parallelism Features

The C55x™ DSP architecture enables you to execute two instructions in
parallel within the same cycle of execution. The types of parallelism are:

� Built-in parallelism within a single instruction.

Some instructions perform two different operations in parallel. A comma is
used to separate the two operations. This type of parallelism is also called
implied parallelism. For example:

AC0 = *AR0 * coef(*CDP),
AC1 = *AR1 * coef(*CDP)

This is a single instruction. The data
referenced by AR0 is multiplied by the
coefficient referenced by CDP. At the
same time, the data referenced by AR1
is multiplied by the same coefficient
(CDP).

� User-defined parallelism between two instructions.

Two instructions may be paralleled by you or the C compiler. The parallel
bars, ||, are used to separate the two instructions to be executed in parallel.
For example:

AC1 = *AR1– * *AR2+
|| T1 = T1 ^ AR2

The first instruction performs a
multiplication in the D-unit. The second
instruction performs a logical operation in
the A-unit ALU.

� Built-in parallelism can be combined with user-defined parallelism.
Parenthesis separators can be used to determine boundaries of the two
instructions. For example:

(AC2 = *AR3+ * AC1,
T3 = *AR3+)
|| AR1 = #5

The first instruction includes implied
parallelism. The second instruction is
paralleled by you.

Parallelism Basics

2-3Parallelism Features and RulesSWPU068E

2.2 Parallelism Basics

In the parallel pair, all of these constraints must be met:

� No resource conflicts as detailed in section 2.3.

� One instruction must have a parallel enable bit or the pair must qualify for
soft-dual parallelism as detailed in section 2.4.

� No memory operand may use an addressing mode that requires a
constant that is 16 bits or larger:

� *abs16(#k16)
� *(#k23)
� *port(#k16)
� *ARn(K16)
� *+ARn(K16)
� *CDP(K16)
� *+CDP(K16)

� The following instructions cannot be in parallel:

� if (cond) goto P24
� if (cond) call P24
� idle
� intr(k5)
� reset
� trap(k5)

� Neither instruction in the parallel pair can use any of these instruction or
operand modifiers:

� circular()
� linear()
� mmap()
� readport()
� writeport()

� A particular register or memory location can only be written once per
pipeline phase. Violations of this rule take many forms. Loading the same
register twice is a simple case. Other cases include:

� Conflicting address mode modifications (for example, *AR2+ versus
*AR2−)

� Combining a SWAP instruction (modifies all of its registers) with any
other instruction that writes one of the same registers

Parallelism Basics

Parallelism Features and Rules2-4 SWPU068E

� Data stack pointer (XSP) or system stack pointer (XSSP) modifications
cannot be combined with any of the following instructions:

� Call Conditionally, (if (cond) call instructions)
� Call Unconditionally, (call instructions)
� Push to top of Stack (push instructions)
� Pop from top of Stack (pop instructions)
� Return Conditionally, (if (cond) return instructions)
� Return Unconditionally, (return instructions)
� Return from Interrupt, (return_int, instructions)
� trap or intr instructions

� When both instructions in a parallel pair modify a status bit, the value of
that status bit becomes undefined.

2.3 Resource Conflicts

Every instruction uses some set of operators, address generation units, and
buses, collectively called resources, while executing. To determine which
resources are used by a specific instruction, see Table 4−1. Two instructions
in parallel use all the resources of the individual instructions. A resource
conflict occurs when two instructions use a combination of resources that is
not supported on the C55x device. This section details the resource conflicts.

2.3.1 Operators

You may use each of these operators only once:

� D Unit ALU
� D Unit Shift
� D Unit Swap
� A Unit Swap
� A Unit ALU
� P Unit

For an instruction that uses multiple operators, any other instruction that uses
one or more of those same operators may not be placed in parallel.

2.3.2 Address Generation Units

You may use no more than the indicated number of data address generation
units:

� 2 Data Address (DA) Generation Units
� 1 Coefficient Address (CA) Generation Unit
� 1 Stack Address (SA) Generation Unit

Parallelism Basics / Resource Conflicts

Soft-Dual Parallelism

2-5Parallelism Features and RulesSWPU068E

2.3.3 Buses

You may use no more than the indicated number of buses:

� 2 Data Read (DR) Buses
� 1 Coefficient Read (CR) Bus
� 2 Data Write (DW) Buses
� 1 ACB Bus − brings D-unit registers to A-unit and P-unit operators

2.4 Soft-Dual Parallelism

Instructions that reference memory operands do not have parallel enable bits.
Two such instructions may still be combined with a type of parallelism called
soft-dual parallelism. The constraints of soft-dual parallelism are:

� Both memory operands must meet the constraints of the dual AR indirect
addressing mode (Xmem and Ymem), as described in section 3.4.2. The
operands available for the dual AR indirect addressing mode are:

� *ARn
� *ARn+
� *ARn–
� *(ARn + AR0)
� *(ARn + T0)
� *(ARn – AR0)
� *(ARn – T0)
� *ARn(AR0)
� *ARn(T0)
� *(ARn + T1)
� *(ARn – T1)

� Neither instruction can contain any of the following:

� Instructions embedding high_byte(Smem) and low_byte(Smem).

� dst = uns(high_byte(Smem))
� dst = uns(low_byte(Smem))
� ACx = low_byte(Smem) << #SHIFTW
� ACx = high_byte(Smem) << #SHIFTW
� high_byte(Smem) = src
� low_byte(Smem) = src

Resource Conflicts / Soft-Dual Parallelism

Execute Conditionally Instructions

Parallelism Features and Rules2-6 SWPU068E

� These instructions that read and write the same memory location:

� cbit(Smem, src)
� bit(Smem, src) = #0
� bit(Smem, src) = #1
� TCx = bit(Smem, k4), bit(Smem, k4) = #1
� TCx = bit(Smem, k4), bit(Smem, k4) = #0
� TCx = bit(Smem, k4), cbit(Smem, k4)

� With regard to soft-dual parallelism, the mar(Smem) and XAdst =
mar(Smem) instructions have the same properties as any memory refer-
ence instruction.

2.4.1 Soft-Dual Parallelism of MAR Instructions

Although the following modify auxiliary register (MAR) instructions do not
reference memory and do not have parallel enable bits, they may be combined
together or with any other memory reference instructions (not limited to Xmem/
Ymem) to form soft-dual parallelism.

� mar(TAy + TAx)
� mar(TAx + k8)
� mar(TAy = TAx)
� mar(TAx = k8)
� mar(TAy – TAx)
� mar(TAx – k8)

Note that this is not the full list of MAR instructions; instructions
mar(TAx = D16) is not included.

2.5 Execute Conditionally Instructions

The parallelization of the execute conditionally, if (cond) execute, instructions
does not adhere to the descriptions in this chapter. All of the specific instances
of legal parallelism are covered in the execute conditionally descriptions in
Chapter 5.

Execute Conditionally Instructions / Other ExceptionsSoft-Dual Parallelism / Execute Conditionally Instructions

Other Exceptions

2-7Parallelism Features and RulesSWPU068E

2.6 Other Exceptions

The following are other exceptions not covered elsewhere in this chapter.

� An instruction that reads the repeat counter register (RPTC) may not be
combined with any single-repeat instruction:

� repeat()
� repeat(CSR)
� while (cond) repeat

Parallelism Features and Rules2-8 SWPU068E

3-1

Introduction to Addressing Modes

This chapter provides an introduction to the addressing modes of the
TMS320C55x™ DSP.

Topic Page

3.1 Introduction to the Addressing Modes 3-2.

3.2 Absolute Addressing Modes 3-3.

3.3 Direct Addressing Modes 3-4.

3.4 Indirect Addressing Modes 3-6.

3.5 Circular Addressing 3-21.

Chapter 3

Introduction to the Addressing Modes

Introduction to Addressing Modes3-2 SWPU068E

3.1 Introduction to the Addressing Modes

The TMS320C55x DSP supports three types of addressing modes that enable
flexible access to data memory, to memory-mapped registers, to register bits,
and to I/O space:

� The absolute addressing mode allows you to reference a location by
supplying all or part of an address as a constant in an instruction.

� The direct addressing mode allows you to reference a location using an
address offset.

� The indirect addressing mode allows you to reference a location using a
pointer.

Each addressing mode provides one or more types of operands. An instruction
that supports an addressing-mode operand has one of the following syntax
elements listed in Table 3−1.

Table 3−1. Addressing-Mode Operands

Syntax
Element(s) Description

Baddr When an instruction contains Baddr, that instruction can access one or two bits in an
accumulator (AC0–AC3), an auxiliary register (AR0–AR7), or a temporary register (T0–T3).
Only the register bit test/set/clear/complement instructions support Baddr. As you write one of
these instructions, replace Baddr with a compatible operand.

Cmem When an instruction contains Cmem, that instruction can access a single word (16 bits) of data
from data memory. As you write the instruction, replace Cmem with a compatible operand.

HI(Cmem)/
LO(Cmem)

When an instruction contains HI(Cmem)/LO(Cmem), that instruction can access a long word
(32 bits) of data from data memory. As you write the instruction, replace Cmem with a compatible
operand.

Lmem When an instruction contains Lmem, that instruction can access a long word (32 bits) of data
from data memory or from a memory-mapped registers. As you write the instruction, replace
Lmem with a compatible operand.

Smem When an instruction contains Smem, that instruction can access a single word (16 bits) of data
from data memory, from I/O space, or from a memory-mapped register. As you write the
instruction, replace Smem with a compatible operand.

Xmem and
Ymem

When an instruction contains Xmem and Ymem, that instruction can perform two simultaneous
16-bit accesses to data memory. As you write the instruction, replace Xmem and Ymem with
compatible operands.

Absolute Addressing Modes

3-3Introduction to Addressing ModesSWPU068E

3.2 Absolute Addressing Modes

Table 3−2 lists the absolute addressing modes available.

Table 3−2. Absolute Addressing Modes

Addressing Mode Description

k16 absolute This mode uses the 7-bit register called DPH (high part of the extended data page
register) and a 16-bit unsigned constant to form a 23-bit data-space address. This mode
is used to access a memory location or a memory-mapped register.

k23 absolute This mode enables you to specify a full address as a 23-bit unsigned constant. This
mode is used to access a memory location or a memory-mapped register.

I/O absolute This mode enables you to specify an I/O address as a 16-bit unsigned constant. This
mode is used to access a location in I/O space.

3.2.1 k16 Absolute Addressing Mode

The k16 absolute addressing mode uses the operand *abs16(#k16), where
k16 is a 16-bit unsigned constant. DPH (the high part of the extended data
page register) and k16 are concatenated to form a 23-bit data-space address.
An instruction using this addressing mode encodes the constant as a 2-byte
extension to the instruction. Because of the extension, an instruction using this
mode cannot be executed in parallel with another instruction.

3.2.2 k23 Absolute Addressing Mode

The k23 absolute addressing mode uses the *(#k23) operand, where k23 is
a 23-bit unsigned constant. An instruction using this addressing mode
encodes the constant as a 3-byte extension to the instruction (the most-signifi-
cant bit of this 3-byte extension is discarded). Because of the extension, an
instruction using this mode cannot be executed in parallel with another
instruction.

Instructions using the operand *(#k23) to access the memory operand Smem
cannot be used in a repeatable instruction. See Table 1−4 for a list of these
instructions.

3.2.3 I/O Absolute Addressing Mode

The I/O absolute addressing mode uses the *port(#k16) operand, where k16
is a 16-bit unsigned constant. An instruction using this addressing mode
encodes the constant as a 2-byte extension to the instruction. Because of the
extension, an instruction using this mode cannot be executed in parallel with
another instruction. The delay() instruction cannot use this mode.

Direct Addressing Modes

Introduction to Addressing Modes3-4 SWPU068E

3.3 Direct Addressing Modes

Table 3−3 lists the direct addressing modes available.

Table 3−3. Direct Addressing Modes

Addressing Mode Description

DP direct This mode uses the main data page specified by DPH (high part of the extended data
page register) in conjunction with the data page register (DP). This mode is used to
access a memory location or a memory-mapped register.

SP direct This mode uses the main data page specified by SPH (high part of the extended stack
pointers) in conjunction with the data stack pointer (SP). This mode is used to access
stack values in data memory.

Register-bit direct This mode uses an offset to specify a bit address. This mode is used to access one
register bit or two adjacent register bits.

PDP direct This mode uses the peripheral data page register (PDP) and an offset to specify an I/O
address. This mode is used to access a location in I/O space.

The DP direct and SP direct addressing modes are mutually exclusive. The
mode selected depends on the CPL bit in status register ST1_55:

CPL Addressing Mode Selected

0 DP direct addressing mode

1 SP direct addressing mode

The register-bit and PDP direct addressing modes are independent of the CPL bit.

3.3.1 DP Direct Addressing Mode

When an instruction uses the DP direct addressing mode, a 23-bit address is
formed. The 7 MSBs are taken from DPH that selects one of the 128 main data
pages (0 through 127). The 16 LSBs are the sum of two values:

� The value in the data page register (DP). DP identifies the start address
of a 128-word local data page within the main data page. This start
address can be any address within the selected main data page.

� A 7-bit offset (Doffset) calculated by the assembler. The calculation
depends on whether you are accessing data memory or a memory-
mapped register (using the mmap() qualifier).

The concatenation of DPH and DP is called the extended data page register
(XDP). You can load DPH and DP individually, or you can use an instruction
that loads XDP.

Direct Addressing Modes

3-5Introduction to Addressing ModesSWPU068E

3.3.2 SP Direct Addressing Mode

When an instruction uses the SP direct addressing mode, a 23-bit address is
formed. The 7 MSBs are taken from SPH. The 16 LSBs are the sum of the SP
value and a 7-bit offset that you specify in the instruction. The offset can be a
value from 0 to 127. The concatenation of SPH and SP is called the extended
data stack pointer (XSP). You can load SPH and SP individually, or you can
use an instruction that loads XSP.

On the first main data page, addresses 00 0000h–00 005Fh are reserved for
the memory-mapped registers. If any of your data stack is in main data page 0,
make sure it uses only addresses 00 0060h–00 FFFFh on that page.

3.3.3 Register-Bit Direct Addressing Mode

In the register-bit direct addressing mode, the offset you supply in the operand,
@bitoffset, is an offset from the LSB of the register. For example, if bitoffset
is 0, you are addressing the LSB of a register. If bitoffset is 3, you are address-
ing bit 3 of the register.

Only the register bit test/set/clear/complement instructions support this mode.
These instructions enable you to access bits in the following registers only: the
accumulators (AC0–AC3), the auxiliary registers (AR0–AR7), and the tempo-
rary registers (T0–T3).

3.3.4 PDP Direct Addressing Mode

When an instruction uses the PDP direct addressing mode, a 16-bit I/O
address is formed. The 9 MSBs are taken from the 9-bit peripheral data page
register (PDP) that selects one of the 512 peripheral data pages (0 through
511). Each page has 128 words (0 to 127). You select a particular word by
specifying a 7-bit offset (Poffset) in the instruction. For example, to access the
first word on a page, use an offset of 0.

You must use a readport() or writeport() instruction qualifier to indicate that you
are accessing an I/O-space location rather than a data-memory location. You
place the readport() or the writeport() instruction qualifier in parallel with the
instruction that performs the I/O-space access.

Indirect Addressing Modes

Introduction to Addressing Modes3-6 SWPU068E

3.4 Indirect Addressing Modes

Table 3−4 list the indirect addressing modes available. You may use these
modes for linear addressing or circular addressing.

Table 3−4. Indirect Addressing Modes

Addressing Mode Description

AR indirect This mode uses one of eight auxiliary registers (AR0–AR7) to point to data. The way the
CPU uses the auxiliary register to generate an address depends on whether you are
accessing data space (memory or memory-mapped registers), individual register bits,
or I/O space.

Dual AR indirect This mode uses the same address-generation process as the AR indirect addressing
mode. This mode is used with instructions that access two or more data-memory
locations.

CDP indirect This mode uses the coefficient data pointer (CDP) to point to data. The way the CPU
uses CDP to generate an address depends on whether you are accessing data space
(memory or memory-mapped registers), individual register bits, or I/O space.

Coefficient indirect This mode uses the same address-generation process as the CDP indirect addressing
mode. This mode is available to support instructions that can access a coefficient in data
memory at the same time they access two other data-memory values using the dual AR
indirect addressing mode.

3.4.1 AR Indirect Addressing Mode

The AR indirect addressing mode uses an auxiliary register ARn (n = 0, 1, 2,
3, 4, 5, 6, or 7) to point to data. The way the CPU uses ARn to generate an
address depends on the access type:

For An Access To ... ARn Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
ARnH, which is the high part of extended auxiliary
register XARn. For accesses to data space, use an
instruction that loads XARn; ARn can be individually
loaded, but ARnH cannot be loaded.

A register bit (or bit pair) A bit number. Only the register bit test/set/clear/com-
plement instructions support AR indirect accesses to
register bits. These instructions enable you to access
bits in the following registers only: the accumulators
(AC0–AC3), the auxiliary registers (AR0–AR7), and
the temporary registers (T0–T3).

I/O space A 16-bit I/O address.

Indirect Addressing Modes

3-7Introduction to Addressing ModesSWPU068E

The AR indirect addressing-mode operand available depends on the ARMS
bit of status register ST2_55:

ARMS DSP Mode or Control Mode

0 DSP mode. The CPU can use the list of DSP mode operands
(Table 3−5), which provide efficient execution of DSP-intensive
applications.

1 Control mode. The CPU can use the list of control mode operands
(Table 3−6), which enable optimized code size for control system
applications.

Table 3−5 (page 3-8) introduces the DSP operands available for the AR
indirect addressing mode. Table 3−6 (page 3-12) introduces the control mode
operands. When using the tables, keep in mind that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.

� All additions to and subtractions from the pointers are done modulo 8M.
ARnH is updated by the hardware when the pointer modification crosses
the main data pages’ boundary.

Indirect Addressing Modes

Introduction to Addressing Modes3-8 SWPU068E

Table 3−5. DSP Mode Operands for the AR Indirect Addressing Mode

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*+ARn ARn is incremented before the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*–ARn ARn is decremented before the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-9Introduction to Addressing ModesSWPU068E

Table 3−5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after the
address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from ARn
after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from that
base pointer.

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T1) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T1 is used as an offset from that
base pointer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

Introduction to Addressing Modes3-10 SWPU068E

Table 3−5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn + T1) The 16-bit signed constant in T1 is added to ARn after the
address is generated:
ARn = ARn + T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T1) The 16-bit signed constant in T1 is subtracted from ARn
after the address is generated:
ARn = ARn – T1

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0B) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0
(The addition is done with reverse carry propagation)

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0B) The 16-bit signed constant in T0 is added to ARn after the
address is generated:
ARn = ARn + T0
(The addition is done with reverse carry propagation)

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-11Introduction to Addressing ModesSWPU068E

Table 3−5. DSP Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn – AR0B) The 16-bit signed constant in AR0 is subtracted from ARn
after the address is generated:
ARn = ARn – AR0
(The subtraction is done with reverse carry propagation)

This operand is available when C54CM = 1. This operand
is usable when .c54cm_on is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – T0B) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0
(The subtraction is done with reverse carry propagation)

This operand is available when C54CM = 0. This operand
is usable when .c54cm_off is active at assembly time.

Note: When this bit-reverse operand is used, ARn cannot
be used as a circular pointer. If ARn is configured in
ST2_55 for circular addressing, the corresponding buffer
start address register value (BSAxx) is added to ARn, but
ARn is not modified so as to remain inside a circular
buffer.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(#K16) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from that
base pointer.

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*+ARn(#K16) The 16-bit signed constant (K16) is added to ARn before
the address is generated:
ARn = ARn + K16

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

Indirect Addressing Modes

Introduction to Addressing Modes3-12 SWPU068E

Table 3−6. Control Mode Operands for the AR Indirect Addressing Mode

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn + 1
If 32-bit/2-bit operation: ARn = ARn + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn– ARn is decremented after the address is generated:
If 16-bit/1-bit operation: ARn = ARn – 1
If 32-bit/2-bit operation: ARn = ARn – 2

Data-memory (Smem, Lmem)

Memory-mapped register
Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after
the address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from
ARn after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

3-13Introduction to Addressing ModesSWPU068E

Table 3−6. Control Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from
that base pointer.

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

*ARn(#K16) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from
that base pointer.

Note: When an instruction uses this operand, the
constant is encoded in a 2-byte extension to the
instruction. Because of the extension, an instruction
using this operand cannot be executed in parallel with
another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

Indirect Addressing Modes

Introduction to Addressing Modes3-14 SWPU068E

Table 3−6. Control Mode Operands for the AR Indirect Addressing Mode (Continued)

Operand Supported Access TypesPointer Modification

*+ARn(#K16) The 16-bit signed constant (K16) is added to ARn
before the address is generated:
ARn = ARn + K16

Note: When an instruction uses this operand, the
constant is encoded in a 2-byte extension to the
instruction. Because of the extension, an instruction
using this operand cannot be executed in parallel with
another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

*ARn(short(#k3)) ARn is not modified. ARn is used as a base pointer. The
3-bit unsigned constant (k3) is used as an offset from
that base pointer. k3 is in the range 1 to 7.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register bit (Baddr)

I/O-space (Smem)

3.4.2 Dual AR Indirect Addressing Mode

The dual AR indirect addressing mode enables you to make two data-memory
accesses through the eight auxiliary registers, AR0–AR7. As with single AR
indirect accesses to data space, the CPU uses an extended auxiliary register
to create each 23-bit address. You can use linear addressing or circular
addressing for each of the two accesses.

You may use the dual AR indirect addressing mode for:

� Executing an instruction that makes two 16-bit data-memory accesses. In
this case, the two data-memory operands are designated in the instruction
syntax as Xmem and Ymem. For example:

ACx = (Xmem << #16) + (Ymem << #16)

� Executing two instructions in parallel. In this case, both instructions must
each access a single memory value, designated in the instruction
syntaxes as Smem or Lmem. For example:

dst = Smem
|| dst = src & Smem

The operand of the first instruction is treated as an Xmem operand, and
the operand of the second instruction is treated as a Ymem operand.

The available dual AR indirect operands are a subset of the AR indirect oper-
ands. The ARMS status bit does not affect the set of dual AR indirect operands
available.

Indirect Addressing Modes

3-15Introduction to Addressing ModesSWPU068E

Note:

The assembler rejects code in which dual operands use the same auxiliary
register with two different auxiliary register modifications. You can use the
same ARn for both operands, if one of the operands is *ARn or *ARn(T0);
neither modifies ARn.

Table 3−7 (page 3-15) introduces the operands available for the dual AR
indirect addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the appropriate 16-bit buffer start address register (BSA01,
BSA23, BSA45, or BSA67) is added only if circular addressing is activated
for the chosen pointer.

� All additions to and subtractions from the pointers are done modulo 8M.
ARnH is updated by the hardware when the pointer modification crosses
the main data pages’ boundary.

Table 3−7. Dual AR Indirect Operands

Operand Pointer Modification Supported Access Types

*ARn ARn is not modified. Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn+ ARn is incremented after the address is generated:
If 16-bit operation: ARn = ARn + 1
If 32-bit operation: ARn = ARn + 2

Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn– ARn is decremented after the address is generated:
If 16-bit operation: ARn = ARn – 1
If 32-bit operation: ARn = ARn – 2

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + AR0) The 16-bit signed constant in AR0 is added to ARn after
the address is generated:
ARn = ARn + AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + T0) The 16-bit signed constant in T0 is added to ARn after
the address is generated:
ARn = ARn + T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

Indirect Addressing Modes

Introduction to Addressing Modes3-16 SWPU068E

Table 3−7. Dual AR Indirect Operands (Continued)

Operand Supported Access TypesPointer Modification

*(ARn – AR0) The 16-bit signed constant in AR0 is subtracted from
ARn after the address is generated:
ARn = ARn – AR0

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn – T0) The 16-bit signed constant in T0 is subtracted from ARn
after the address is generated:
ARn = ARn – T0

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn(AR0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in AR0 is used as an offset from
that base pointer.

This operand is available when C54CM = 1. This
operand is usable when .c54cm_on is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*ARn(T0) ARn is not modified. ARn is used as a base pointer. The
16-bit signed constant in T0 is used as an offset from
that base pointer.

This operand is available when C54CM = 0. This
operand is usable when .c54cm_off is active at
assembly time.

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn + T1) The 16-bit signed constant in T1 is added to ARn after
the address is generated:
ARn = ARn + T1

Data-memory
(Smem, Lmem, Xmem, Ymem)

*(ARn – T1) The 16-bit signed constant in T1 is subtracted from ARn
after the address is generated:
ARn = ARn – T1

Data-memory
(Smem, Lmem, Xmem, Ymem)

3.4.3 CDP Indirect Addressing Mode

The CDP indirect addressing mode uses the coefficient data pointer (CDP) to
point to data. The way the CPU uses CDP to generate an address depends
on the access type:

Indirect Addressing Modes

3-17Introduction to Addressing ModesSWPU068E

For An Access To ... CDP Contains ...

Data space
(memory or registers)

The 16 least significant bits (LSBs) of a 23-bit address.
The 7 most significant bits (MSBs) are supplied by
CDPH, the high part of the extended coefficient data
pointer (XCDP).

A register bit (or bit pair) A bit number. Only the register bit test/set/clear/com-
plement instructions support CDP indirect accesses to
register bits. These instructions enable you to access
bits in the following registers only: the accumulators
(AC0–AC3), the auxiliary registers (AR0–AR7), and
the temporary registers (T0–T3).

I/O space A 16-bit I/O address.

Table 3−8 (page 3-17) introduces the operands available for the CDP indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.

� All additions to and subtractions from the pointers are done modulo 8M.
CDPH is updated by the hardware when the pointer modification crosses
the main data pages’ boundary.

Table 3−8. CDP Indirect Operands

Operand Pointer Modification Supported Access Types

*CDP CDP is not modified. Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP+ CDP is incremented after the address is generated:
If 16-bit/1-bit operation: CDP = CDP + 1
If 32-bit/2-bit operation: CDP = CDP + 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

Indirect Addressing Modes

Introduction to Addressing Modes3-18 SWPU068E

Table 3−8. CDP Indirect Operands (Continued)

Operand Supported Access TypesPointer Modification

*CDP– CDP is decremented after the address is generated:
If 16-bit/1-bit operation: CDP = CDP – 1
If 32-bit/2-bit operation: CDP = CDP – 2

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

I/O-space (Smem)

*CDP(#K16) CDP is not modified. CDP is used as a base pointer. The
16-bit signed constant (K16) is used as an offset from that
base pointer.

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction.
Because of the extension, an instruction using this
operand cannot be executed in parallel with another
instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

*+CDP(#K16) The 16-bit signed constant (K16) is added to CDP before
the address is generated:
CDP = CDP + K16

Note: When an instruction uses this operand, the constant
is encoded in a 2-byte extension to the instruction. Be-
cause of the extension, an instruction using this operand
cannot be executed in parallel with another instruction.

Data-memory (Smem, Lmem)

Memory-mapped register
(Smem, Lmem)

Register-bit (Baddr)

Indirect Addressing Modes

3-19Introduction to Addressing ModesSWPU068E

3.4.4 Coefficient Indirect Addressing Mode

The coefficient indirect addressing mode uses the same address-generation
process as the CDP indirect addressing mode for data-space accesses. The
coefficient indirect addressing mode is supported by select memory-to-
memory move and memory initialization instructions and by the following
arithmetical instructions:

� Dual multiply (accumulate/subtract)
� Finite impulse response filter
� Multiply
� Multiply and accumulate
� Multiply and subtract

Instructions using the coefficient indirect addressing mode to access data are
mainly instructions performing operations with three memory operands per
cycle. Two of these operands (Xmem and Ymem) are accessed with the dual
AR indirect addressing mode. The third operand (Cmem) is accessed with the
coefficient indirect addressing mode. The Cmem operand is carried on the BB
bus.

Keep the following facts about the BB bus in mind as you use the coefficient
indirect addressing mode:

� The BB bus is not connected to external memory. If a Cmem operand is
accessed through the BB bus, the operand must be in internal memory.

� Although the following instructions access Cmem operands, they do not
use the BB bus to fetch the 16-bit or 32-bit Cmem operand.

Instruction
Syntax

Description of
Cmem Access

Bus Used to
Access Cmem

Smem = Cmem 16-bit read from Cmem DB

Cmem = Smem 16-bit write to Cmem EB

Lmem = dbl(Cmem) 32-bit read from Cmem CB for most significant
word (MSW)
DB for least significant
word (LSW)

dbl(Cmem) = Lmem 32-bit write to Cmem FB for MSW
EB for LSW

Indirect Addressing Modes

Introduction to Addressing Modes3-20 SWPU068E

Consider the following instruction syntax. In one cycle, two multiplications can
be performed in parallel. One memory operand (Cmem) is common to both
multiplications, while dual AR indirect operands (Xmem and Ymem) are used
for the other values in the multiplication.

ACx = Xmem * Cmem,
ACy = Ymem * Cmem

To access three memory values (as in the above example) in a single cycle,
the value referenced by Cmem must be located in a memory bank different
from the one containing the Xmem and Ymem values.

Table 3−9 introduces the operands available for the coefficient indirect
addressing mode. Note that:

� Both pointer modification and address generation are linear or circular
according to the pointer configuration in status register ST2_55. The
content of the 16-bit buffer start address register BSAC is added only if
circular addressing is activated for CDP.

� All additions to and subtractions from the pointers are done modulo 8M.
CDPH is updated by the hardware when the pointer modification crosses
the main data pages’ boundary.

Table 3−9. Coefficient Indirect Operands

Operand Pointer Modification Supported Access Type

*CDP CDP is not modified.1 Data-memory

*CDP+ CDP is incremented after the address is generated:
If 16-bit operation: CDP = CDP + 1
If 32-bit operation: CDP = CDP + 2

Data-memory

*CDP– CDP is decremented after the address is generated:
If 16-bit operation: CDP = CDP – 1
If 32-bit operation: CDP = CDP – 2

Data-memory

*(CDP + AR0) The 16-bit signed constant in AR0 is added to CDP after the
address is generated:
CDP = CDP + AR0

This operand is available when C54CM = 1. This operand is
usable when .c54cm_on is active at assembly time.

Data-memory

*(CDP + T0) The 16-bit signed constant in T0 is added to CDP after the
address is generated:
CDP = CDP + T0

This operand is available when C54CM = 0. This operand is
usable when .c54cm_off is active at assembly time.

Data-memory

Circular Addressing

3-21Introduction to Addressing ModesSWPU068E

3.5 Circular Addressing

Circular addressing can be used with any of the indirect addressing modes.
Each of the eight auxiliary registers (AR0–AR7) and the coefficient data point-
er (CDP) can be independently configured to be linearly or circularly modified
as they act as pointers to data or to register bits, see Table 3−10. This configu-
ration is done with a bit (ARnLC) in status register ST2_55. To choose circular
modification, set the bit.

Table 3−10. Circular Addressing Pointers

Pointer
Linear/Circular

Configuration Bit
Supplier of

Main Data Page
Buffer Start Address

Register
Buffer Size

Register

AR0

AR1

AR2

AR3

AR4

AR5

AR6

AR7

CDP

ST2_55(0) = AR0LC

ST2_55(1) = AR1LC

ST2_55(2) = AR2LC

ST2_55(3) = AR3LC

ST2_55(4) = AR4LC

ST2_55(5) = AR5LC

ST2_55(6) = AR6LC

ST2_55(7) = AR7LC

ST2_55(8) = CDPLC

AR0H

AR1H

AR2H

AR3H

AR4H

AR5H

AR6H

AR7H

CDPH

BSA01

BSA01

BSA23

BSA23

BSA45

BSA45

BSA67

BSA67

BSAC

BK03

BK03

BK03

BK03

BK47

BK47

BK47

BK47

BKC

Each auxiliary register ARn has its own linear/circular configuration bit in ST2_55:

ARnLC ARn Is Used For ...

0 Linear addressing

1 Circular addressing

The CDPLC bit in status register ST2_55 configures the DSP to use CDP for
linear addressing or circular addressing:

CDPLC CDP Is Used For ...

0 Linear addressing

1 Circular addressing

You can use the circular addressing instruction qualifier, circular(), if you want
every pointer used by the instruction to be modified circularly, just add the
circular() qualifier in parallel with the instruction. The circular addressing
instruction qualifier overrides the linear/circular configuration in ST2_55.

Introduction to Addressing Modes3-22 SWPU068E

4-1

Instruction Set Summary

This chapter provides a summary of the TMS320C55x™ DSP algebraic
instruction set (Table 4−1). With each instruction, you will find the availability
of a parallel enable bit, word count (size), cycle time, what pipeline phase the
instruction executes, in what operator unit the instruction executes, how many
of each address generation unit is used, and how many of each bus is used.

Table 4−1 does not list all of the resources that may be used by an instruction,
it only lists those that may result in a resource conflict, and thus prevent two
instructions from being in parallel. If an instruction lists nothing in a particular
column, it means that particular resource will never be in conflict for that
instruction.

The column heads of Table 4−1 are:

� Instruction: In cases where the resource usage of an instruction varies
with the kinds of registers, you see the notation <name>-AU for A-unit
registers and <name>-DU for D-unit registers. So, dst-AU is a destination
that is an A-unit register and src-DU is a source that is a D-unit register.
In the few cases where that notation is insufficient, you see the cases listed
in the Notes column.

� E: Whether that instruction has a parallel enable bit

� S: The size of the instruction in bytes

� C: Number of cycles required for the instruction

� Pipe: The pipeline phase in which the instruction executes:

Name Phase

AD Address

D Decode

R Read

X Execute

� Operator: Which operator(s) are used by this instruction. When an instruc-
tion uses multiple operators, any other instruction that uses one or more
of those same operators may not be placed in parallel.

Chapter 4

Instruction Set Summary

Instruction Set Summary4-2 SWPU068E

� Address Generation Unit: How many of each address generation unit is
used. The address generation units are:

Name Unit

DA Data Address Generation Unit

CA Coefficient Address Generation Unit

SA Stack Address Generation Unit

� Buses: How many of each bus is used. The buses are:

Name Bus

DR Data Read

CR Coefficient Read

DW Data Write

ACB Brings D unit registers to A unit and P unit operators

Instruction S
et S

um
m

ary

4-3
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary

Address
Generation Unit Buses

No. Instruction E S C Pipe Operator DA CA SA DR CR DW ACB Notes

Absolute Distance (page 5-2)

abdst(Xmem, Ymem, ACx, ACy) N 4 1 X DU_ALU +
DU_MAC1

2 . . 2 . . .

Absolute Value (page 5-4)

dst-AU = |src-AU| Y 2 1 X AU_ALU

dst-AU = |src-DU| Y 2 1 X AU_ALU 1

dst-DU = |src| Y 2 1 X DU_ALU See Note 1.

Addition (page 5-7)

[1] dst-AU = dst-AU + src-AU Y 2 1 X AU_ALU

dst-AU = dst-AU + src-DU Y 2 1 X AU_ALU 1

dst-DU = dst-DU + src Y 2 1 X DU_ALU See Note 1.

[2] dst-AU = dst-AU + k4 Y 2 1 X AU_ALU

dst-DU = dst-DU + k4 Y 2 1 X DU_ALU

[3] dst-AU = src-AU + K16 N 4 1 X AU_ALU

dst-AU = src-DU + K16 N 4 1 X AU_ALU 1

dst-DU = src + K16 N 4 1 X DU_ALU See Note 1.

[4] dst-AU = src-AU + Smem N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = src-DU + Smem N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = src + Smem N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

[5] ACy = ACy + (ACx << Tx) Y 2 1 X DU_SHIFT

[6] ACy = ACy + (ACx << #SHIFTW) Y 3 1 X DU_SHIFT

[7] ACy = ACx + (K16 << #16) N 4 1 X DU_ALU

[8] ACy = ACx + (K16 << #SHFT) N 4 1 X DU_SHIFT

[9] ACy = ACx + (Smem << Tx) N 3 1 X DU_SHIFT 1 . . 1 . . .

[10] ACy = ACx + (Smem << #16) N 3 1 X DU_ALU 1 . . 1 . . .

[11] ACy = ACx + uns(Smem) + CARRY N 3 1 X DU_ALU 1 . . 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-4
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[12] ACy = ACx + uns(Smem) N 3 1 X DU_ALU 1 . . 1 . . .

[13] ACy = ACx + (uns(Smem) << #SHIFTW) N 4 1 X DU_SHIFT 1 . . 1 . . .

[14] ACy = ACx + dbl(Lmem) N 3 1 X DU_ALU 1 . . 2 . . .

[15] ACx = (Xmem << #16) + (Ymem << #16) N 3 1 X DU_ALU 2 . . 2 . . .

[16] Smem = Smem + K16 N 4 1 X DU_ALU 1 . . 1 . 1 .

Addition with Absolute Value (page 5-27)

ACy = rnd(ACy + |ACx|) Y 2 1 X DU_MAC1

Addition with Parallel Store Accumulator Content to Memory (page 5-29)

ACy = ACx + (Xmem << #16),
Ymem = HI(ACy << T2)

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 .

Addition or Subtraction Conditionally (page 5-31)

[1] ACy = adsc(Smem, ACx, TC1) N 3 1 X DU_SHIFT 1 . . 1 . . .

[2] ACy = adsc(Smem, ACx, TC2) N 3 1 X DU_SHIFT 1 . . 1 . . .

Addition or Subtraction Conditionally with Shift (page 5-33)

ACy = ads2c(Smem, ACx, Tx, TC1, TC2) N 3 1 X DU_SHIFT 1 . . 1

Addition, Subtraction, or Move Accumulator Content Conditionally (page 5-36)

ACy = adsc(Smem, ACx, TC1, TC2) N 3 1 X DU_SHIFT 1 . . 1 . . .

Bitwise AND (page 5-38)

[1] dst-AU = dst-AU & src-AU Y 2 1 X AU_ALU

dst-AU = dst-AU & src-DU Y 2 1 X AU_ALU 1

dst-DU = dst-DU & src Y 2 1 X DU_ALU See Note 1.

[2] dst-AU = src-AU & k8 Y 3 1 X AU_ALU

dst-AU = src-DU & k8 Y 3 1 X AU_ALU 1

dst-DU = src & k8 Y 3 1 X DU_ALU See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-5
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[3] dst-AU = src-AU & k16 N 4 1 X AU_ALU

dst-AU = src-DU & k16 N 4 1 X AU_ALU 1

dst-DU = src & k16 N 4 1 X DU_ALU See Note 1.

[4] dst-AU = src-AU & Smem N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = src-DU & Smem N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = src & Smem N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

[5] ACy = ACy & (ACx <<< #SHIFTW) Y 3 1 X DU_SHIFT

[6] ACy = ACx & (k16 <<< #16) N 4 1 X DU_ALU

[7] ACy = ACx & (k16 <<< #SHFT) N 4 1 X DU_SHIFT

[8] Smem = Smem & k16 N 4 1 X AU_ALU 1 . . 1 . 1 .

Bitwise AND Memory with Immediate Value and Compare to Zero (page 5-47)

[1] TC1 = Smem & k16 N 4 1 X AU_ALU 1 . . 1 . . .

[2] TC2 = Smem & k16 N 4 1 X AU_ALU 1 . . 1 . . .

Bitwise OR (page 5-48)

[1] dst-AU = dst-AU | src-AU Y 2 1 X AU_ALU

dst-AU = dst-AU | src-DU Y 2 1 X AU_ALU 1

dst-DU = dst-DU | src Y 2 1 X DU_ALU See Note 1.

[2] dst-AU = src-AU | k8 Y 3 1 X AU_ALU

dst-AU = src-DU | k8 Y 3 1 X AU_ALU 1

dst-DU = src | k8 Y 3 1 X DU_ALU See Note 1.

[3] dst-AU = src-AU | k16 N 4 1 X AU_ALU

dst-AU = src-DU | k16 N 4 1 X AU_ALU 1

dst-DU = src | k16 N 4 1 X DU_ALU See Note 1.

[4] dst-AU = src-AU | Smem N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = src-DU | Smem N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = src | Smem N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-6
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[5] ACy = ACy | (ACx <<< #SHIFTW) Y 3 1 X DU_SHIFT

[6] ACy = ACx | (k16 <<< #16) N 4 1 X DU_ALU

[7] ACy = ACx | (k16 <<< #SHFT) N 4 1 X DU_SHIFT

[8] Smem = Smem | k16 N 4 1 X AU_ALU 1 . . 1 . 1 .

Bitwise Exclusive OR (XOR) (page 5-57)

[1] dst-AU = dst-AU ^ src-AU Y 2 1 X AU_ALU

dst-AU = dst-AU ^ src-DU Y 2 1 X AU_ALU 1

dst-DU = dst-DU ^ src Y 2 1 X DU_ALU See Note 1.

[2] dst-AU = src-AU ^ k8 Y 3 1 X AU_ALU

dst-AU = src-DU ^ k8 Y 3 1 X AU_ALU 1

dst-DU = src ^ k8 Y 3 1 X DU_ALU See Note 1.

[3] dst-AU = src-AU ^ k16 N 4 1 X AU_ALU

dst-AU = src-DU ^ k16 N 4 1 X AU_ALU 1

dst-DU = src ^ k16 N 4 1 X DU_ALU See Note 1.

[4] dst-AU = src-AU ^ Smem N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = src-DU ^ Smem N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = src ^ Smem N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

[5] ACy = ACy ^ (ACx <<< #SHIFTW) Y 3 1 X DU_SHIFT

[6] ACy = ACx ^ (k16 <<< #16) N 4 1 X DU_ALU

[7] ACy = ACx ^ (k16 <<< #SHFT) N 4 1 X DU_SHIFT

[8] Smem = Smem ^ k16 N 4 1 X AU_ALU 1 . . 1 . 1 .

Branch Conditionally (page 5-66)

[1] if (cond) goto l4 N 2 6/5† R PU_UNIT

[2] if (cond) goto L8 Y 3 6/5† R PU_UNIT

[3] if (cond) goto L16 N 4 6/5† R PU_UNIT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-7
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[4] if (cond) goto P24 N 5 5/5† R PU_UNIT

† x/y cycles: x cycles = condition true, y cycles = condition false

Branch Unconditionally (page 5-70)

[1] goto ACx N 2 10 X PU_UNIT 1

[2] goto L7 Y 2 6† AD PU_UNIT

[3] goto L16 Y 3 6† AD PU_UNIT

[4] goto P24 N 4 5 D PU_UNIT

† These instructions execute in 3 cycles if the addressed instruction is in the instruction buffer unit.

Branch on Auxiliary Register Not Zero (page 5-74)

if (ARn_mod != #0) goto L16 N 4 6/5† AD PU_UNIT 1

† x/y cycles: x cycles = condition true, y cycles = condition false

Call Conditionally (page 5-77)

[1] if (cond) call L16 N 4 6/5† R PU_UNIT 1 . 1 . . 2 .

[2] if (cond) call P24 N 5 5/5† R PU_UNIT 1 . 1 . . 2 .

† x/y cycles: x cycles = condition true, y cycles = condition false

Call Unconditionally (page 5-83)

[1] call ACx N 2 10 X PU_UNIT 1 . 1 . . 2 1

[2] call L16 Y 3 6 AD PU_UNIT 1 . 1 . . 2 .

[3] call P24 N 4 5 D PU_UNIT 1 . 1 . . 2 .

Circular Addressing Qualifier (page 5-87)

circular() N 1 1 AD

Clear Accumulator, Auxiliary, or Temporary Register Bit (page 5-88)

bit(src-AU, Baddr) = #0 N 3 1 X AU_ALU 1

bit(src-DU, Baddr) = #0 N 3 1 X DU_BIT 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-8
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Clear Memory Bit (page 5-89)

bit(Smem, src) = #0 N 3 1 X AU_ALU 1 . . 1 . 1 .

Clear Status Register Bit (page 5-90)

[1] bit(ST0, k4) = #0 Y 2 1 X AU_ALU

[2] bit(ST1, k4) = #0 Y 2 1 X AU_ALU

[3] bit(ST2, k4) = #0 Y 2 1 X AU_ALU

[4] bit(ST3, k4) = #0 Y 2 1† X AU_ALU

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed and the instruction is executed in 5 cycles regardless of the instruction context.

Compare Accumulator, Auxiliary, or Temporary Register Content (page 5-93)

[1] TC1 = uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TC1 = uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TC1 = uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

[2] TC2 = uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TC2 = uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TC2 = uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

Compare Accumulator, Auxiliary, or Temporary Register Content with AND (page 5-95)

[1] TCx = TCy & uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TCx = TCy & uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TCx = TCy & uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

[2] TCx = !TCy & uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TCx = !TCy & uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TCx = !TCy & uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-9
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Compare Accumulator, Auxiliary, or Temporary Register Content with OR (page 5-100)

[1] TCx = TCy | uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TCx = TCy | uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TCx = TCy | uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

[2] TCx = !TCy | uns(src-AU RELOP dst-AU) Y 3 1 X AU_ALU

TCx = !TCy | uns(src RELOP dst) Y 3 1 X AU_ALU 1 See Note 2.

TCx = !TCy | uns(src-DU RELOP dst-DU) Y 3 1 X DU_ALU

Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (page 5-105)

dst-AU = max(src-AU, dst-AU) Y 2 1 X AU_ALU

dst-AU = max(src-DU, dst-AU) Y 2 1 X AU_ALU 1

dst-DU = max(src, dst-DU) Y 2 1 X DU_ALU See Note 1.

Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (page 5-108)

dst-AU = min(src-AU, dst-AU) Y 2 1 X AU_ALU

dst-AU = min(src-DU, dst-AU) Y 2 1 X AU_ALU 1

dst-DU = min(src, dst-DU) Y 2 1 X DU_ALU See Note 1.

Compare and Branch (page 5-111)

compare (uns(src-AU RELOP K8)) goto L8 N 4 7/6† X AU_ALU +
PU_UNIT

.

compare (uns(src-DU RELOP K8)) goto L8 N 4 7/6† X DU_ALU +
PU_UNIT

.

† x/y cycles: x cycles = condition true, y cycles = condition false

Compare and Select Accumulator Content Maximum (page 5-114)

[1] max_diff(ACx, ACy, ACz, ACw) Y 3 1 X DU_ALU

[2] max_diff_dbl(ACx, ACy, ACz, ACw, TRNx) Y 3 1 X DU_ALU

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-10
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Compare and Select Accumulator Content Minimum (page 5-120)

[1] min_diff(ACx, ACy, ACz, ACw) Y 3 1 X DU_ALU

[2] min_diff_dbl(ACx, ACy, ACz, ACw, TRNx) Y 3 1 X DU_ALU

Compare Memory with Immediate Value (page 5-126)

[1] TC1 = (Smem == K16) N 4 1 X AU_ALU 1 . . 1 . . .

[2] TC2 = (Smem == K16) N 4 1 X AU_ALU 1 . . 1 . . .

Complement Accumulator, Auxiliary, or Temporary Register Bit (page 5-128)

cbit(src-AU, Baddr) N 3 1 X AU_ALU 1

cbit(src-DU, Baddr) N 3 1 X DU_BIT 1

Complement Accumulator, Auxiliary, or Temporary Register Content (page 5-129)

dst-AU = ~src-AU Y 2 1 X AU_ALU

dst-AU = ~src-DU Y 2 1 X AU_ALU 1

dst-DU = ~src Y 2 1 X DU_ALU See Note 1.

Complement Memory Bit (page 5-130)

cbit(Smem, src) N 3 1 X AU_ALU 1 . . 1 . 1 .

Compute Exponent of Accumulator Content (page 5-131)

Tx = exp(ACx) Y 3 1 X DU_BIT +
AU_ALU

. 1

Compute Mantissa and Exponent of Accumulator Content (page 5-132)

ACy = mant(ACx), Tx = exp(ACx) Y 3 1 X DU_BIT +
DU_SHIFT
+ AU_ALU

. 1

Count Accumulator Bits (page 5-134)

[1] Tx = count(ACx, ACy, TC1) Y 3 1 X DU_BIT +
AU_ALU

. 1

[2] Tx = count(ACx, ACy, TC2) Y 3 1 X DU_BIT +
AU_ALU

. 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-11
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Dual 16-Bit Additions (page 5-135)

[1] HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

N 3 1 X DU_ALU 1 . . 2 . . .

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

N 3 1 X DU_ALU 1 . . 2 . . .

Dual 16-Bit Addition and Subtraction (page 5-140)

[1] HI(ACx) = Smem + Tx,
LO(ACx) = Smem − Tx

N 3 1 X DU_ALU 1 . . 1 . . .

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) − Tx

N 3 1 X DU_ALU 1 . . 2 . . .

Dual 16-Bit Subtractions (page 5-145)

[1] HI(ACy) = HI(ACx) − HI(Lmem),
LO(ACy) = LO(ACx) − LO(Lmem)

N 3 1 X DU_ALU 1 . . 2 . . .

[2] HI(ACy) = HI(Lmem) − HI(ACx),
LO(ACy) = LO(Lmem) − LO(ACx)

N 3 1 X DU_ALU 1 . . 2 . . .

[3] HI(ACx) = Tx − HI(Lmem),
LO(ACx) = Tx − LO(Lmem)

N 3 1 X DU_ALU 1 . . 2 . . .

[4] HI(ACx) = HI(Lmem) − Tx,
LO(ACx) = LO(Lmem) − Tx

N 3 1 X DU_ALU 1 . . 2 . . .

Dual 16-Bit Subtraction and Addition (page 5-154)

[1] HI(ACx) = Smem − Tx,
LO(ACx) = Smem + Tx

N 3 1 X DU_ALU 1 . . 1 . . .

[2] HI(ACx) = HI(Lmem) − Tx,
LO(ACx) = LO(Lmem) + Tx

N 3 1 X DU_ALU 1 . . 2 . . .

Execute Conditionally (page 5-159)

[1] if (cond) execute(AD_Unit) N 2 1 AD PU_UNIT

[2] if (cond) execute(D_Unit) N 2 1 X PU_UNIT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-12
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Expand Accumulator Bit Field (page 5-166)

dst-AU = field_expand(ACx, k16) N 4 1 X DU_BIT +
AU_ALU

. 1

dst-DU = field_expand(ACx, k16) N 4 1 X DU_BIT

Extract Accumulator Bit Field (page 5-167)

dst-AU = field_extract(ACx, k16) N 4 1 X DU_BIT +
AU_ALU

. 1

dst-DU = field_extract(ACx, k16) N 4 1 X DU_BIT

Finite Impulse Response Filter, Antisymmetrical (page 5-168)

firsn(Xmem, Ymem, coef(Cmem), ACx, ACy) N 4 1 X DU_ALU +
DU_MAC1

2 1 . 2 1 . .

Finite Impulse Response Filter, Symmetrical (page 5-170)

firs(Xmem, Ymem, coef(Cmem), ACx, ACy) N 4 1 X DU_ALU +
DU_MAC1

2 1 . 2 1 . .

Idle (page 5-172)

idle N 4 ? D PU_UNIT

Least Mean Square (LMS) (page 5-173)

lms(Xmem, Ymem, ACx, ACy) N 4 1 X DU_ALU +
DU_MAC1

2 . . 2 . . .

Least Mean Square (LMSF) (page 5-175)

lmsf(Xmem, Ymem, ACx, ACy) N 4 1 X DU_MAC1 +
DU_MAC2 +
DU_ALU

2 . . 2 . 1 .

Linear Addressing Qualifier (page 5-179)

linear() N 1 1 AD

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-13
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Load Accumulator from Memory (page 5-180)

[1] ACx = rnd(Smem << Tx) N 3 1 X DU_SHIFT 1 . . 1 . . .

[2] ACx = low_byte(Smem) << #SHIFTW N 3 1 X DU_SHIFT 1 . . 1 . . .

[3] ACx = high_byte(Smem) << #SHIFTW N 3 1 X DU_SHIFT 1 . . 1 . . .

[4] ACx = Smem << #16 N 2 1 X DU_LOAD 1 . . 1 . . .

[5] ACx = uns(Smem) N 3 1 X DU_LOAD 1 . . 1 . . .

[6] ACx = uns(Smem) << #SHIFTW N 4 1 X DU_SHIFT 1 . . 1 . . .

[7] ACx = M40(dbl(Lmem)) N 3 1 X DU_LOAD 1 . . 2 . . .

[8] LO(ACx) = Xmem,
HI(ACx) = Ymem

N 3 1 X DU_LOAD 2 . . 2 . . .

Load Accumulator Pair from Memory (page 5-191)

[1] pair(HI(ACx)) = Lmem N 3 1 X DU_LOAD 1 . . 2 . . .

[2] pair(LO(ACx)) = Lmem N 3 1 X DU_LOAD 1 . . 2 . . .

Load Accumulator with Immediate Value (page 5-196)

[1] ACx = K16 << #16 N 4 1 X DU_LOAD

[2] ACx = K16 << #SHFT N 4 1 X DU_SHIFT

Load Accumulator from Memory with Parallel Store Accumulator Content to Memory (page 5-189)

ACy = Xmem << #16,
Ymem = HI(ACx << T2)

N 4 1 X DU_LOAD +
DU_SHIFT

2 . . 2 . 2 .

Load Accumulator, Auxiliary, or Temporary Register from Memory (page 5-199)

[1] dst-AU = Smem N 2 1 X AU_LOAD 1 . . 1 . . .

dst-DU = Smem N 2 1 X DU_LOAD 1 . . 1 . . .

[2] dst-AU = uns(high_byte(Smem)) N 3 1 X AU_LOAD 1 . . 1 . . .

dst-DU = uns(high_byte(Smem)) N 3 1 X DU_LOAD 1 . . 1 . . .

[3] dst-AU = uns(low_byte(Smem)) N 3 1 X AU_LOAD 1 . . 1 . . .

dst-DU = uns(low_byte(Smem)) N 3 1 X DU_LOAD 1 . . 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-14
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value (page 5-205)

[1] dst-AU = k4 Y 2 1 X AU_LOAD

dst-DU = k4 Y 2 1 X DU_LOAD

[2] dst-AU = −k4 Y 2 1 X AU_LOAD

dst-DU = −k4 Y 2 1 X DU_LOAD

[3] dst-AU = K16 N 4 1 X AU_LOAD

dst-DU = K16 N 4 1 X DU_LOAD

Load Auxiliary or Temporary Register Pair from Memory (page 5-209)

pair(TAx) = Lmem N 3 1 X AU_LOAD 1 . . 2 . . .

Load CPU Register from Memory (page 5-210)

[1] BK03 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[2] BK47 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[3] BKC = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[4] BSA01 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[5] BSA23 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[6] BSA45 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[7] BSA67 = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[8] BSAC = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[9] BRC0 = Smem N 3 1 X 1 . . 1 . . .

[10] BRC1 = Smem N 3 1 X 1 . . 1 . . .

[11] CDP = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[12] CSR = Smem N 3 1 X 1 . . 1 . . .

[13] DP = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[14] DPH = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[15] PDP = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-15
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[16] SP = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[17] SSP = Smem N 3 1 X AU_LOAD 1 . . 1 . . .

[18] TRN0 = Smem N 3 1 X DU_LOAD 1 . . 1 . . .

[19] TRN1 = Smem N 3 1 X DU_LOAD 1 . . 1 . . .

[20] RETA = dbl(Lmem) N 3 5 X 1 . . 2 . . .

Load CPU Register with Immediate Value (page 5-213)

[1] BK03 = k12 Y 3 1 AD AU_LOAD

[2] BK47 = k12 Y 3 1 AD AU_LOAD

[3] BKC = k12 Y 3 1 AD AU_LOAD

[4] BRC0 = k12 Y 3 1 AD

[5] BRC1 = k12 Y 3 1 AD

[6] CSR = k12 Y 3 1 AD

[7] DPH = k7 Y 3 1 AD AU_LOAD

[8] PDP = k9 Y 3 1 AD AU_LOAD

[9] BSA01 = k16 N 4 1 AD AU_LOAD

[10] BSA23 = k16 N 4 1 AD AU_LOAD

[11] BSA45 = k16 N 4 1 AD AU_LOAD

[12] BSA67 = k16 N 4 1 AD AU_LOAD

[13] BSAC = k16 N 4 1 AD AU_LOAD

[14] CDP = k16 N 4 1 AD AU_LOAD

[15] DP = k16 N 4 1 AD AU_LOAD

[16] SP = k16 N 4 1 AD AU_LOAD

[17] SSP = k16 N 4 1 AD AU_LOAD

Load Extended Auxiliary Register from Memory (page 5-215)

XAdst = dbl(Lmem) N 3 1 X 1 . . 2 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-16
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Load Extended Auxiliary Register with Immediate Value (page 5-216)

XAdst = k23 N 6 1 AD AU_LOAD 1 . . 1 . . .

Load Memory with Immediate Value (page 5-217)

[1] Smem = K8 N 3 1 X 1 1 .

[2] Smem = K16 N 4 1 X 1 1 .

Lock Access Qualifier (page 5-218)

lock() N 2 1 D

Memory Delay (page 5-220)

delay(Smem) N 2 1 X 2 1 . 1 1 1 .

Memory-Mapped Register Access Qualifier (page 5-221)

mmap() N 1 1 D

Modify Auxiliary Register Content (page 5-222)

mar(Smem) N 2 1 AD 1 . . 1 . . .

Modify Auxiliary Register Content with Parallel Multiply (page 5-224)

mar(Xmem),
ACx = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

N 4 1 X DU_MAC1 2 1 . 2 1 . .

Modify Auxiliary Register Content with Parallel Multiply and Accumulate (page 5-226)

[1] mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 2 1 . 2 1 . .

[2] mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 2 1 . 2 1 . .

Modify Auxiliary Register Content with Parallel Multiply and Subtract (page 5-231)

mar(Xmem),
ACx = M40(rnd(ACx – (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 2 1 . 2 1 . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-17
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Modify Auxiliary or Temporary Register Content (page 5-233)

[1] mar(TAy = TAx) N 3 1 AD 1

[2] mar(TAx = P8) N 3 1 AD 1

[3] mar(TAx = D16) N 4 1 AD 1

Modify Auxiliary or Temporary Register Content by Addition (page 5-237)

[1] mar(TAy + TAx) N 3 1 AD 1

[2] mar(TAx + P8) N 3 1 AD 1

Modify Auxiliary or Temporary Register Content by Subtraction (page 5-241)

[1] mar(TAy − TAx) N 3 1 AD 1

[2] mar(TAx − P8) N 3 1 AD 1

Modify Data Stack Pointer (SP) (page 5-245)

SP = SP + K8 Y 2 1 AD

Modify Extended Auxiliary Register Content (page 5-246)

[1] XAdst = mar(Smem) N 3 1 AD 1 . . 1 . . .

[2] mar(XACdst = XACsrc) Y 3 1 AD 1

Modify Extended Auxiliary Register Content by Addition (page 5-249)

mar(XACdst + XACsrc) Y 3 1 AD 1

Modify Extended Auxiliary Register Content by Subtraction (page 5-251)

mar(XACdst − XACsrc) Y 3 1 AD 1

Move Accumulator Content to Auxiliary or Temporary Register (page 5-253)

TAx = HI(ACx) Y 2 1 X AU_ALU 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-18
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Move Accumulator, Auxiliary, or Temporary Register Content (page 5-254)

dst-AU = src-AU Y 2 1 X AU_ALU

dst-AU = src-DU Y 2 1 X AU_ALU 1

dst-DU = src Y 2 1 X DU_ALU See Note 1.

Move Auxiliary or Temporary Register Content to Accumulator (page 5-256)

HI(ACx) = TAx Y 2 1 X DU_ALU

Move Auxiliary or Temporary Register Content to CPU Register (page 5-257)

[1] BRC0 = TAx Y 2 1 X AU_ALU

[2] BRC1 = TAx Y 2 1 X AU_ALU

[3] CDP = TAx Y 2 1 X AU_ALU

[4] CSR = TAx Y 2 1 X AU_ALU

[5] SP = TAx Y 2 1 X AU_ALU

[6] SSP = TAx Y 2 1 X AU_ALU

Move CPU Register Content to Auxiliary or Temporary Register (page 5-259)

[1] TAx = BRC0 Y 2 1 X AU_ALU

[2] TAx = BRC1 Y 2 1 X AU_ALU

[3] TAx = CDP Y 2 1 X AU_ALU

[4] TAx = RPTC Y 2 1 X AU_ALU

[5] TAx = SP Y 2 1 X AU_ALU

[6] TAx = SSP Y 2 1 X AU_ALU

Move Extended Auxiliary Register Content (page 5-261)

xdst-AU = xsrc-AU N 2 1 X AU_ALU

xdst-AU = xsrc-DU N 2 1 X AU_ALU 1

xdst-DU = xsrc N 2 1 X DU_ALU See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-19
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Move Memory to Memory (page 5-262)

[1] Smem = coef(Cmem) N 3 1 X 2 . . 1 . 1 .

[2] coef(Cmem) = Smem N 3 1 X 2 . . 1 . 1 .

[3] Lmem = dbl(coef(Cmem)) N 3 1 X 2 . . 2 . 2 .

[4] dbl(coef(Cmem)) = Lmem N 3 1 X 2 . . 2 . 2 .

[5] dbl(Ymem) = dbl(Xmem) N 3 1 X 2 . . 2 . 2 .

[6] Ymem = Xmem N 3 1 X 2 . . 2 . 2 .

Multiply (MPY) (page 5-269)

[1] ACy = rnd(ACy * ACx) Y 2 1 X DU_MAC1

[2] ACy = rnd(ACx * Tx) Y 2 1 X DU_MAC1

[3] ACy = rnd(ACx * K8) Y 3 1 X DU_ALU

[4] ACy = rnd(ACx * K16) N 4 1 X DU_ALU

[5] ACx = rnd(Smem * coef(Cmem))[, T3 = Smem] N 3 1 X DU_ALU 1 1 . 1 1 . .

[6] ACy = rnd(Smem * ACx)[, T3 = Smem] N 3 1 X DU_ALU 1 . . 1 . . .

[7] ACx = rnd(Smem * K8)[, T3 = Smem] N 4 1 X DU_MAC1 1 . . 1 . . .

[8] ACx = M40(rnd(uns(Xmem) * uns(Ymem)))[, T3 = Xmem] N 4 1 X DU_MAC1 2 . . 2 . . .

[9] ACx = rnd(uns(Tx * Smem))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

[10] ACx = rnd(Smem * uns(coef(Cmem))) N 3 1 X DU_MAC1 1 1 . 1 1 . .

Multiply with Parallel Multiply and Accumulate (page 5-283)

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-20
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Multiply with Parallel Multiply and Subtract (page 5-295)

[1] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[2] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[3] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Multiply with Parallel Store Accumulator Content to Memory (page 5-305)

ACy = rnd(Tx * Xmem),
Ymem = HI(ACx << T2) [, T3 = Xmem]

N 4 1 X DU_MAC1 +
DU_SHIFT

2 . . 2 . 2 .

Multiply and Accumulate (MAC) (page 5-308)

[1] ACy = rnd(ACy + (ACx * Tx)) Y 2 1 X DU_MAC1

[2] ACy = rnd((ACy * Tx) + ACx) Y 2 1 X DU_MAC1

[3] ACy = rnd(ACx + (Tx * K8)) Y 3 1 X DU_MAC1

[4] ACy = rnd(ACx + (Tx * K16)) N 4 1 X DU_MAC1

[5] ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem] N 3 1 X DU_MAC1 1 1 . 1 1 . .

[6] ACy = rnd(ACy + (Smem * ACx))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

[7] ACy = rnd(ACx + (Tx * Smem))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

[8] ACy = rnd(ACx + (Smem * K8))[, T3 = Smem] N 4 1 X DU_MAC1 1 . . 1 . . .

[9] ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))[, T3 = Xmem] N 4 1 X DU_MAC1 2 . . 2 . . .

[10] ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))[, T3 = Xmem] N 4 1 X DU_MAC1 2 . . 2 . . .

[11] ACx = rnd(ACx + (Smem * uns(coef(Cmem)))) N 3 1 X DU_MAC1 1 1 . 1 1 . .

Multiply and Accumulate with Parallel Delay (page 5-325)

ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem],
delay(Smem)

N 3 1 X DU_MAC1 2 1 . 1 1 1 .

Multiply and Accumulate with Parallel Load Accumulator from Memory (page 5-327)

ACx = rnd(ACx + (Tx * Xmem)),
ACy = Ymem << #16 [, T3 = Xmem]

N 4 1 X DU_MAC1 2 . . 2 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-21
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Multiply and Accumulate with Parallel Multiply (page 5-329)

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd((ACy >> #16) + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[4] ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[5] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Multiply and Accumulate with Parallel Multiply and Subtract (page 5-347)

[1] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[2] ACy = M40(rnd((ACy >> #16) + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[4] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[5] ACy = M40(rnd(ACy + uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) * uns(LO(coef(Cmem))))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Multiply and Accumulate with Parallel Store Accumulator Content to Memory (page 5-367)

ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(ACx << T2) [, T3 = Xmem]

N 4 1 X DU_MAC1 +
DU_SHIFT

2 . . 2 . 2 .

Multiply and Subtract (MAS) (page 5-369)

[1] ACy = rnd(ACy – (ACx * Tx)) Y 2 1 X DU_MAC1

[2] ACx = rnd(ACx – (Smem * coef(Cmem)))[, T3 = Smem] N 3 1 X DU_MAC1 1 1 . 1 1 . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-22
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[3] ACy = rnd(ACy – (Smem * ACx))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

[4] ACy = rnd(ACx – (Tx * Smem))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

[5] ACy = M40(rnd(ACx – (uns(Xmem) * uns(Ymem))))[, T3 = Xmem] N 4 1 X DU_MAC1 2 . . 2 . . .

[6] ACx = rnd(ACx − (Smem * uns(coef(Cmem)))) N 3 1 X DU_MAC1 1 1 . 1 1 . .

Multiply and Subtract with Parallel Load Accumulator from Memory (page 5-379)

ACx = rnd(ACx – (Tx * Xmem)),
ACy = Ymem << #16 [, T3 = Xmem]

N 4 1 X DU_MAC1 2 . . 2 . . .

Multiply and Subtract with Parallel Multiply (page 5-381)

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

Multiply and Subtract with Parallel Multiply and Accumulate (page 5-390)

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[3] ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[4] ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

Multiply and Subtract with Parallel Store Accumulator Content to Memory (page 5-401)

ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(ACx << T2) [, T3 = Xmem]

N 4 1 X DU_MAC1 +
DU_SHIFT

2 . . 2 . 2 .

Negate Accumulator, Auxiliary, or Temporary Register Content (page 5-403)

dst-AU = −src-AU Y 2 1 X AU_ALU

dst-AU = −src-DU Y 2 1 X AU_ALU 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-23
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

dst-DU = −src Y 2 1 X DU_ALU See Note 1.

No Operation (NOP) (page 5-405)

[1] nop Y 1 1 D

[2] nop_16 Y 2 1 D

Parallel Modify Auxiliary Register Contents (page 5-406)

mar(Xmem) , mar(Ymem) , mar(coef(Cmem)) N 4 1 X 2 1 . 2 1 . .

Parallel Multiplies (page 5-407)

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Parallel Multiply and Accumulates (page 5-419)

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M4(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_ALU 2 1 . 2 1 . .

[3] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[4] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[5] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[6] ACy = M40(rnd((ACy >> #16) + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[7] ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-24
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[8] ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[9] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[10] ACy = M40(rnd(ACy + uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

[11] ACy = M40(rnd(ACy + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(LO(coef(Cmem))))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

[12] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(LO(coef(Cmem))))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Parallel Multiply and Subtracts (page 5-454)

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy – (uns(Ymem) * uns(coef(Cmem)))))

N 4 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 1 . .

[2] ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 1 2 . .

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

N 4 1 X DU_MAC1 +
DU_MAC2

1 1 . 2 2 . .

[4] ACy = M40(rnd(ACy − (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) * uns(LO(coef(Cmem))))))

N 5 1 X DU_MAC1 +
DU_MAC2

2 1 . 2 2 . .

Peripheral Port Register Access Qualifiers (page 5-466)

[1] readport() N 1 1 D

[2] writeport() N 1 1 D

Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers (page 5-468)

xdst-AU = popboth() Y 2 1 X AU_LOAD 1 . 1 2 . . .

xdst-DU = popboth() Y 2 1 X DU_LOAD 1 . 1 2 . . .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-25
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Pop Top of Stack (page 5-469)

[1] dst1-AU, dst2-AU = pop() Y 2 1 X AU_LOAD 1 . 1 2 . . .

dst1-DU, dst2-DU = pop() Y 2 1 X DU_LOAD 1 . 1 2 . . .

dst1-AU, dst2-DU = pop() Y 2 1 X AU_LOAD +
DU_LOAD

1 . 1 2 . . .

dst1-DU, dst2-AU = pop() Y 2 1 X DU_LOAD +
AU_LOAD

1 . 1 2 . . .

[2] dst-AU = pop() Y 2 1 X AU_LOAD 1 . 1 1 . . .

dst-DU = pop() Y 2 1 X DU_LOAD 1 . 1 1 . . .

[3] dst-AU, Smem = pop() N 3 1 X AU_LOAD 1 . 1 2 . 1 .

dst-DU, Smem = pop() N 3 1 X DU_LOAD 1 . 1 2 . 1 .

[4] ACx = dbl(pop()) Y 2 1 X DU_LOAD 1 . 1 2 . . .

[5] Smem = pop() N 2 1 X 1 . 1 1 . 1 .

[6] dbl(Lmem) = pop() N 2 1 X 1 . 1 2 . 2 .

Push Accumulator or Extended Auxiliary Register Content to Stack Pointers (page 5-476)

pushboth(xsrc) Y 2 1 X 1 . 1 . . 2 .

Push to Top of Stack (page 5-477)

[1] push(src1, src2) Y 2 1 X 1 . 1 . . 2 .

[2] push(src) Y 2 1 X 1 . 1 . . 1 .

[3] push(src, Smem) N 3 1 X 1 . 1 1 . 2 .

[4] dbl(push(ACx)) Y 2 1 X 1 . 1 . . 2 .

[5] push(Smem) N 2 1 X 1 . 1 1 . 1 .

[6] push(dbl(Lmem)) N 2 1 X 1 . 1 2 . 2 .

Repeat Block of Instructions Unconditionally (page 5-484)

[1] localrepeat{ } Y 2 1 AD PU_UNIT

[2] blockrepeat{ } Y 3 1 AD PU_UNIT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-26
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Repeat Single Instruction Conditionally (page 5-495)

while (cond && (RPTC < k8)) repeat Y 3 1 AD PU_UNIT

Repeat Single Instruction Unconditionally (page 5-498)

[1] repeat(k8) Y 2 1 AD PU_UNIT

[2] repeat(k16) Y 3 1 AD PU_UNIT

[3] repeat(CSR) Y 2 1 AD PU_UNIT

Repeat Single Instruction Unconditionally and Decrement CSR (page 5-503)

repeat(CSR), CSR −= k4 Y 2 1 X AU_ALU +
PU_UNIT

.

Repeat Single Instruction Unconditionally and Increment CSR (page 5-505)

[1] repeat(CSR), CSR += TAx Y 2 1 X AU_ALU +
PU_UNIT

.

[2] repeat(CSR), CSR += k4 Y 2 1 X AU_ALU +
PU_UNIT

.

Return Conditionally (page 5-508)

if (cond) return Y 3 5/5† R PU_UNIT 1 . 1 2 . . .

† x/y cycles: x cycles = condition true, y cycles = condition false

Return Unconditionally (page 5-510)

return Y 2 5 D PU_UNIT 1 . 1 2 . . .

Return from Interrupt (page 5-512)

return_int N 2 5 D PU_UNIT 1 . 1 2 . . .

Rotate Left Accumulator, Auxiliary, or Temporary Register Content (page 5-514)

dst-AU = BitOut \\ src-AU \\ BitIn Y 3 1 X AU_ALU

dst-AU = BitOut \\ src-DU \\ BitIn Y 3 1 X AU_ALU 1

dst-DU = BitOut \\ src-AU \\ BitIn Y 3 1 X DU_SHIFT See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-27
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Rotate Right Accumulator, Auxiliary, or Temporary Register Content (page 5-516)

dst-AU = BitIn // src-AU // BitOut Y 3 1 X AU_ALU

dst-AU = BitIn // src-DU // BitOut Y 3 1 X AU_ALU 1

dst-DU = BitIn // src-AU // BitOut Y 3 1 X DU_SHIFT See Note 1.

Round Accumulator Content (page 5-518)

ACy = rnd(ACx) Y 2 1 X DU_ALU

Saturate Accumulator Content (page 5-520)

ACy = saturate(rnd(ACx)) Y 2 1 X DU_ALU

Set Accumulator, Auxiliary, or Temporary Register Bit (page 5-522)

bit(src-AU, Baddr) = #1 N 3 1 X AU_ALU 1

bit(src-DU, Baddr) = #1 N 3 1 X DU_BIT 1

Set Memory Bit (page 5-523)

bit(Smem, src) = #1 N 3 1 X AU_ALU 1 . . 1 . 1 .

Set Status Register Bit (page 5-524)

[1] bit(ST0, k4) = #1 Y 2 1 X AU_ALU

[2] bit(ST1, k4) = #1 Y 2 1 X AU_ALU

[3] bit(ST2, k4) = #1 Y 2 1 X AU_ALU

[4] bit(ST3, k4) = #1 Y 2 1† X AU_ALU

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed and the instruction is executed in 5 cycles regardless of the instruction context.

Shift Accumulator Content Conditionally (page 5-527)

[1] ACx = sftc(ACx, TC1) Y 2 1 X DU_SHIFT

[2] ACx = sftc(ACx, TC2) Y 2 1 X DU_SHIFT

Shift Accumulator Content Logically (page 5-529)

[1] ACy = ACx <<< Tx Y 2 1 X DU_SHIFT

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-28
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[2] ACy = ACx <<< #SHIFTW Y 3 1 X DU_SHIFT

Shift Accumulator, Auxiliary, or Temporary Register Content Logically (page 5-532)

[1] dst-AU = dst-AU <<< #1 Y 2 1 X AU_ALU +
DU_SHIFT

.

dst-DU = dst-DU <<< #1 Y 2 1 X DU_SHIFT

[2] dst-AU = dst-AU >>> #1 Y 2 1 X AU_ALU +
DU_SHIFT

.

dst-DU = dst-DU >>> #1 Y 2 1 X DU_SHIFT

Signed Shift of Accumulator Content (page 5-535)

[1] ACy = ACx << Tx Y 2 1 X DU_SHIFT

[2] ACy = ACx << #SHIFTW Y 3 1 X DU_SHIFT

[3] ACy = ACx <<C Tx Y 2 1 X DU_SHIFT

[4] ACy = ACx <<C #SHIFTW Y 3 1 X DU_SHIFT

Signed Shift of Accumulator, Auxiliary, or Temporary Register Content (page 5-544)

[1] dst-AU = dst-AU >> #1 Y 2 1 X AU_ALU +
DU_SHIFT

.

dst-DU = dst-DU >> #1 Y 2 1 X DU_SHIFT

[2] dst-AU = dst-AU << #1 Y 2 1 X AU_ALU +
DU_SHIFT

.

dst-DU = dst-DU << #1 Y 2 1 X DU_SHIFT

Software Interrupt (page 5-549)

intr(k5) N 2 3 D PU_UNIT 1 . 1 . . 2 .

Software Reset (page 5-551)

reset N 2 ? D PU_UNIT

Software Trap (page 5-555)

trap(k5) N 2 ? D PU_UNIT 1 . 1 . . 2 .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-29
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Square (page 5-557)

[1] ACy = rnd(ACx * ACx) Y 2 1 X DU_MAC1

[2] ACx = rnd(Smem * Smem)[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

Square and Accumulate (page 5-560)

[1] ACy = rnd(ACy + (ACx * ACx)) Y 2 1 X DU_MAC1

[2] ACy = rnd(ACx + (Smem * Smem))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

Square and Subtract (page 5-563)

[1] ACy = rnd(ACy – (ACx * ACx)) Y 2 1 X DU_MAC1

[2] ACy = rnd(ACx – (Smem * Smem))[, T3 = Smem] N 3 1 X DU_MAC1 1 . . 1 . . .

Square Distance (page 5-566)

sqdst(Xmem, Ymem, ACx, ACy) N 4 1 X DU_ALU +
DU_MAC1

2 . . 2 . . .

Store Accumulator Content to Memory (page 5-568)

[1] Smem = HI(ACx) N 2 1 X 1 1 .

[2] Smem = HI(rnd(ACx)) N 3 1 X DU_SHIFT 1 1 .

[3] Smem = LO(ACx << Tx) N 3 1 X DU_SHIFT 1 1 .

[4] Smem = HI(rnd(ACx << Tx)) N 3 1 X DU_SHIFT 1 1 .

[5] Smem = LO(ACx << #SHIFTW) N 3 1 X DU_SHIFT 1 1 .

[6] Smem = HI(ACx << #SHIFTW) N 3 1 X DU_SHIFT 1 1 .

[7] Smem = HI(rnd(ACx << #SHIFTW)) N 4 1 X DU_SHIFT 1 1 .

[8] Smem = HI(saturate(uns(rnd(ACx)))) N 3 1 X DU_SHIFT 1 1 .

[9] Smem = HI(saturate(uns(rnd(ACx << Tx)))) N 3 1 X DU_SHIFT 1 1 .

[10] Smem = HI(saturate(uns(rnd(ACx << #SHIFTW)))) N 4 1 X DU_SHIFT 1 1 .

[11] dbl(Lmem) = ACx N 3 1 X 1 2 .

[12] dbl(Lmem) = saturate(uns(ACx)) N 3 1 X DU_SHIFT 1 2 .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-30
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[13] HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

N 3 1 X DU_SHIFT 1 2 .

[14] Xmem = LO(ACx),
Ymem = HI(ACx)

N 3 1 X 2 2 .

Store Accumulator Pair Content to Memory (page 5-588)

[1] Lmem = pair(HI(ACx)) N 3 1 X 1 2 .

[2] Lmem = pair(LO(ACx)) N 3 1 X 1 2 .

Store Accumulator, Auxiliary, or Temporary Register Content to Memory (page 5-591)

[1] Smem = src N 2 1 X 1 1 .

[2] high_byte(Smem) = src N 3 1 X 1 1 .

[3] low_byte(Smem) = src N 3 1 X 1 1 .

Store Auxiliary or Temporary Register Pair Content to Memory (page 5-595)

Lmem = pair(TAx) N 3 1 X 1 2 .

Store CPU Register Content to Memory (page 5-596)

[1] Smem = BK03 N 3 1 X 1 1 .

[2] Smem = BK47 N 3 1 X 1 1 .

[3] Smem = BKC N 3 1 X 1 1 .

[4] Smem = BSA01 N 3 1 X 1 1 .

[5] Smem = BSA23 N 3 1 X 1 1 .

[6] Smem = BSA45 N 3 1 X 1 1 .

[7] Smem = BSA67 N 3 1 X 1 1 .

[8] Smem = BSAC N 3 1 X 1 1 .

[9] Smem = BRC0 N 3 1 X 1 1 .

[10] Smem = BRC1 N 3 1 X 1 1 .

[11] Smem = CDP N 3 1 X 1 1 .

[12] Smem = CSR N 3 1 X 1 1 .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-31
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[13] Smem = DP N 3 1 X 1 1 .

[14] Smem = DPH N 3 1 X 1 1 .

[15] Smem = PDP N 3 1 X 1 1 .

[16] Smem = SP N 3 1 X 1 1 .

[17] Smem = SSP N 3 1 X 1 1 .

[18] Smem = TRN0 N 3 1 X 1 1 .

[19] Smem = TRN1 N 3 1 X 1 1 .

[20] dbl(Lmem) = RETA N 3 5 X 1 2 .

Store Extended Auxiliary Register Content to Memory (page 5-600)

dbl(Lmem) = XAsrc N 3 1 X 1 2 .

Subtract Conditionally (page 5-601)

subc(Smem, ACx, ACy) N 3 1 X DU_ALU 1 . . 1 . . .

Subtraction (page 5-603)

[1] dst-AU = dst-AU − src-AU Y 2 1 X AU_ALU

dst-AU = dst-AU − src-DU Y 2 1 X AU_ALU 1

dst-DU = dst-DU − src Y 2 1 X DU_ALU See Note 1.

[2] dst-AU = dst-AU − k4 Y 2 1 X AU_ALU

dst-DU = dst-DU − k4 Y 2 1 X DU_ALU

[3] dst-AU = src-AU − K16 N 4 1 X AU_ALU

dst-AU = src-DU − K16 N 4 1 X AU_ALU 1

dst-DU = src − K16 N 4 1 X DU_ALU See Note 1.

[4] dst-AU = src-AU − Smem N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = src-DU − Smem N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = src − Smem N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-32
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[5] dst-AU = Smem − src-AU N 3 1 X AU_ALU 1 . . 1 . . .

dst-AU = Smem − src-DU N 3 1 X AU_ALU 1 . . 1 . . 1

dst-DU = Smem − src N 3 1 X DU_ALU 1 . . 1 . . . See Note 1.

[6] ACy = ACy − (ACx << Tx) Y 2 1 X DU_SHIFT

[7] ACy = ACy − (ACx << #SHIFTW) Y 3 1 X DU_SHIFT

[8] ACy = ACx − (K16 << #16) N 4 1 X DU_ALU

[9] ACy = ACx − (K16 << #SHFT) N 4 1 X DU_SHIFT

[10] ACy = ACx − (Smem << Tx) N 3 1 X DU_SHIFT 1 . . 1 . . .

[11] ACy = ACx − (Smem << #16) N 3 1 X DU_ALU 1 . . 1 . . .

[12] ACy = (Smem << #16) − ACx N 3 1 X DU_ALU 1 . . 1 . . .

[13] ACy = ACx – uns(Smem) – BORROW N 3 1 X DU_ALU 1 . . 1 . . .

[14] ACy = ACx – uns(Smem) N 3 1 X DU_ALU 1 . . 1 . . .

[15] ACy = ACx – (uns(Smem) << #SHIFTW) N 4 1 X DU_SHIFT 1 . . 1 . . .

[16] ACy = ACx − dbl(Lmem) N 3 1 X DU_ALU 1 . . 2 . . .

[17] ACy = dbl(Lmem) − ACx N 3 1 X DU_ALU 1 . . 2 . . .

[18] ACx = (Xmem << #16) − (Ymem << #16) N 3 1 X DU_ALU 2 . . 2 . . .

Subtraction with Parallel Store Accumulator Content to Memory (page 5-627)

ACy = (Xmem << #16) − ACx,
Ymem = HI(ACy << T2)

N 4 1 X DU_ALU +
DU_SHIFT

2 . . 2 . 2 .

Swap Accumulator Content (page 5-629)

[1] swap(AC0, AC2) Y 2 1 X DU_SWAP

[2] swap(AC1, AC3) Y 2 1 X DU_SWAP

Swap Accumulator Pair Content (page 5-630)

swap(pair(AC0), pair(AC2)) Y 2 1 X DU_SWAP

Swap Auxiliary Register Content (page 5-631)

[1] swap(AR0, AR1) Y 2 1 AD AU_SWAP

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-33
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

[2] swap(AR0, AR2) Y 2 1 AD AU_SWAP

[3] swap(AR1, AR3) Y 2 1 AD AU_SWAP

Swap Auxiliary Register Pair Content (page 5-632)

swap(pair(AR0), pair(AR2)) Y 2 1 AD AU_SWAP

Swap Auxiliary and Temporary Register Content (page 5-633)

[1] swap(AR4, T0) Y 2 1 AD AU_SWAP

[2] swap(AR5, T1) Y 2 1 AD AU_SWAP

[3] swap(AR6, T2) Y 2 1 AD AU_SWAP

[4] swap(AR7, T3) Y 2 1 AD AU_SWAP

Swap Auxiliary and Temporary Register Pair Content (page 5-635)

[1] swap(pair(AR4), pair(T0)) Y 2 1 AD AU_SWAP

[2] swap(pair(AR6), pair(T2)) Y 2 1 AD AU_SWAP

Swap Auxiliary and Temporary Register Pairs Content (page 5-637)

swap(block(AR4), block(T0)) Y 2 1 AD AU_SWAP

Swap Temporary Register Content (page 5-639)

[1] swap(T0, T2) Y 2 1 AD AU_SWAP

[2] swap(T1, T3) Y 2 1 AD AU_SWAP

Swap Temporary Register Pair Content (page 5-640)

swap(pair(T0), pair(T2)) Y 2 1 AD AU_SWAP

Test Accumulator, Auxiliary, or Temporary Register Bit (page 5-641)

[1] TC1 = bit(src-AU, Baddr) N 3 1 X AU_ALU 1

TC1 = bit(src-DU, Baddr) N 3 1 X DU_BIT 1

[2] TC2 = bit(src-AU, Baddr) N 3 1 X AU_ALU 1

TC2 = bit(src-DU, Baddr) N 3 1 X DU_BIT 1

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

Instruction S
et S

um
m

ary

4-34
Instruction S

et S
um

m
ary

S
W

P
U

068E

Table 4−1. Algebraic Instruction Set Summary (Continued)

Buses
Address

Generation Unit

No. NotesACBDWCRDRSACADAOperatorPipeCSEInstruction

Test Accumulator, Auxiliary, or Temporary Register Bit Pair (page 5-643)

bit(src-AU, pair(Baddr)) N 3 1 X AU_ALU 1

bit(src-DU, pair(Baddr)) N 3 1 X DU_BIT 1

Test Memory Bit (page 5-645)

[1] TCx = bit(Smem, src) N 3 1 X AU_ALU 1 . . 1 . . .

[2] TCx = bit(Smem, k4) N 3 1 X AU_ALU 1 . . 1 . . .

Test and Clear Memory Bit (page 5-648)

[1] TC1 = bit(Smem, k4),
bit(Smem, k4) = #0

N 3 1 X AU_ALU 1 . . 1 . 1 .

[2] TC2 = bit(Smem, k4),
bit(Smem, k4) = #0

N 3 1 X AU_ALU 1 . . 1 . 1 .

Test and Complement Memory Bit (page 5-649)

[1] TC1 = bit(Smem, k4),
cbit(Smem, k4)

N 3 1 X AU_ALU 1 . . 1 . 1 .

[2] TC2 = bit(Smem, k4),
cbit(Smem, k4)

N 3 1 X AU_ALU 1 . . 1 . 1 .

Test and Set Memory Bit (page 5-650)

[1] TC1 = bit(Smem, k4),
bit(Smem, k4) = #1

N 3 1 X AU_ALU 1 . . 1 . 1 .

[2] TC2 = bit(Smem, k4),
bit(Smem, k4) = #1

N 3 1 X AU_ALU 1 . . 1 . 1 .

Notes: 1) dst-DU, src-AU or dst-DU, src-DU

2) dst-DU, src-AU or dst-AU, src-DU

5-1

Instruction Set Descriptions

This chapter provides detailed information on the TMS320C55x™ DSP
algebraic instruction set.

See Section 1.1, Instruction Set Terms, Symbols, and Abbreviations, for defini-
tions of symbols and abbreviations used in the description of each instruction.
See Chapter 4 for a summary of the instruction set.

Chapter 5

abdst Absolute Distance (abdst)

Instruction Set Descriptions5-2 SWPU068E

Absolute Distanceabdst

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] abdst(Xmem, Ymem, ACx, ACy) No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 1111 xxn%

Operands ACx, ACy, Xmem, Ymem

Description This instruction executes two operations in parallel: one in the D-unit MAC and
one in the D-unit ALU:

ACy = ACy + |HI(ACx)|
ACx = (Xmem << #16) – (Ymem << #16)

The absolute value of accumulator ACx content is computed and added to
accumulator ACy content through the D-unit MAC. When an overflow is
detected according to M40:

� the destination accumulator overflow status bit (ACOVy) is set

� the destination register (ACy) is saturated according to SATD

The Ymem content shifted left 16 bits is subtracted from the Xmem content
shifted left 16 bits in the D-unit ALU.

� Input operands (Xmem and Ymem) are sign extended to 40 bits according
to SXMD.

� CARRY status bit depends on M40. Subtraction borrow bit is reported in
CARRY status bit. It is the logical complement of CARRY status bit.

� When an overflow is detected according to M40:

� the destination accumulator overflow status bit (ACOVx) is set

� the destination register (ACx) is saturated according to SATD

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

When C54CM = 1, the subtract operation does not have any overflow
detection, report, and saturation after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

 Absolute Distance (abdst) abdst

5-3Instruction Set DescriptionsSWPU068E

See Also See the following other related instructions:

� Square Distance

Example

Syntax Description

abdst(*AR0+, *AR1, AC0, AC1) The absolute value of the content of AC0 is added to the content of
AC1 and the result is stored in AC1. The content addressed by AR1 is
subtracted from the content addressed by AR0 and the result is stored
in AC0. The content of AR0 is incremented by 1.

Before After

AC0 00 0000 0000 AC0 00 4500 0000

AC1 00 E800 0000 AC1 00 E800 0000

AR0 202 AR0 203

AR1 302 AR1 302

202 3400 202 3400

302 EF00 302 EF00

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

M40 1 M40 1

SXMD 1 SXMD 1

ABS Absolute Value

Instruction Set Descriptions5-4 SWPU068E

Absolute ValueABS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = |src| Yes 2 1 X

Opcode 0011 001E FSSS FDDD

Operands dst, src

Description This instruction computes the absolute value of the source register (src).

� When the destination register (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� If M40 = 0, the sign of the source register is extracted at bit position
31. If src(31) = 1, the source register content is negated. If src(31) = 0,
the source register content is moved to the destination accumulator.

� If M40 = 1, the sign of the source register is extracted at bit position
39. If src(39) = 1, the source register content is negated. If src(39) = 0,
the source register content is moved to the destination accumulator.

� During the 40-bit move operation, an overflow and CARRY bit status
are detected according to M40:

� The destination accumulator overflow status bit (ACOVx) is set.

� The destination register is saturated according to SATD.

� The CARRY status bit is updated as follows: If the result of the
operation stored in the destination register is 0, CARRY is set;
otherwise, CARRY is cleared.

� When the destination register (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand of the instruction, the 16 LSBs
of the accumulator are used to perform the operation.

� The sign of the source register is extracted at bit position 15. If
src(15) = 1, the source register content is negated. If src(15) = 0, the
source register content is moved to the destination register. Overflow
is detected at bit position 15.

� The destination register is saturated according to SATA.

 Absolute Value ABS

5-5Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

When C54CM =1, this instruction is executed as if M40 status bit was locally
set to 1. To ensure compatibility versus overflow detection and saturation of
destination accumulator, this instruction must be executed with M40 = 0.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition with Absolute Value

Example 1

Syntax Description

AC1 = |AC0| The absolute value of the content of AC0 is stored in AC1.

Before After

AC1 00 0000 2000 AC1 7D FFFF EDCC

AC0 82 0000 1234 AC0 82 0000 1234

M40 1 M40 1

Example 2

Syntax Description

AC1 = |AR1| The absolute value of the content of AR1 is stored in AC1.

Before After

AC1 00 0000 2000 AC1 00 0000 0000

AR1 0000 AR1 0000

CARRY 0 CARRY 1

Example 3

Syntax Description

AC1 = |AR1| The absolute value of the content of AR1 is stored in AC1. Since SXMD = 1, AR1 content
is sign extended. The resulting 40-bit data is negated since M40 = 0 and AR1(31) = 1.

Before After

AC1 00 0000 2000 AC1 00 0000 7900

AR1 8700 AR1 8700

M40 0 M40 0

SXMD 1 SXMD 1

ABS Absolute Value

Instruction Set Descriptions5-6 SWPU068E

Example 4

Syntax Description

T1 = |AC0| The absolute value of the content of AC0(15−0) is stored in T1. The sign bit is extracted at
AC0(15). Since AC0(15) = 0, T1 = AC0(15−0).

Before After

T1 2000 T1 1234

AC0 80 0002 1234 AC0 80 0002 1234

Example 5

Syntax Description

T1 = |AC0| The absolute value of the content of AC0(15−0) is stored in T1. The sign bit is extracted at
AC0(15). Since AC0(15) = 1, T1 equals the negated value of AC0(15−0).

Before After

T1 2000 T1 6DCC

AC0 80 0002 9234 AC0 80 0002 9234

 Addition ADD

5-7Instruction Set DescriptionsSWPU068E

AdditionADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst + src Yes 2 1 X

[2] dst = dst + k4 Yes 2 1 X

[3] dst = src + K16 No 4 1 X

[4] dst = src + Smem No 3 1 X

[5] ACy = ACy + (ACx << Tx) Yes 2 1 X

[6] ACy = ACy + (ACx << #SHIFTW) Yes 3 1 X

[7] ACy = ACx + (K16 << #16) No 4 1 X

[8] ACy = ACx + (K16 << #SHFT) No 4 1 X

[9] ACy = ACx + (Smem << Tx) No 3 1 X

[10] ACy = ACx + (Smem << #16) No 3 1 X

[11] ACy = ACx + uns(Smem) + CARRY No 3 1 X

[12] ACy = ACx + uns(Smem) No 3 1 X

[13] ACy = ACx + (uns(Smem) << #SHIFTW) No 4 1 X

[14] ACy = ACx + dbl(Lmem) No 3 1 X

[15] ACx = (Xmem << #16) + (Ymem << #16) No 3 1 X

[16] Smem = Smem + K16 No 4 1 X

Description These instructions perform an addition operation.

Status Bits Affected by CARRY, C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

ADD Addition

Instruction Set Descriptions5-8 SWPU068E

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition with Absolute Value

� Addition with Parallel Store Accumulator Content to Memory

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Additions

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtraction and Addition

� Subtraction

 Addition ADD

5-9Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst + src Yes 2 1 X

Opcode 0010 010E FSSS FDDD

Operands dst, src

Description This instruction performs an addition operation between two registers.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + AC1 The content of AC1 is added to the content of AC0 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-10 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = dst + k4 Yes 2 1 X

Opcode 0100 000E kkkk FDDD

Operands dst, k4

Description This instruction performs an addition operation between a register content and
a 4-bit unsigned constant, k4.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + k4 The content of AC0 is added to an unsigned 4-bit value and the result is stored in AC0.

 Addition ADD

5-11Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = src + K16 No 4 1 X

Opcode 0111 1011 KKKK KKKK KKKK KKKK FDDD FSSS

Operands dst, K16, src

Description This instruction performs an addition operation between a register content and
a 16-bit signed constant, K16.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The 16-bit constant, K16, is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC0 + #2E00h The content of AC0 is added to the signed 16-bit value (2E00h) and the result is
stored in AC1.

ADD Addition

Instruction Set Descriptions5-12 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dst = src + Smem No 3 1 X

Opcode 1101 0110 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs an addition operation between a register content and
the content of a memory (Smem) location.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Addition overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

 Addition ADD

5-13Instruction Set DescriptionsSWPU068E

Repeat This instruction can be repeated.

Example

Syntax Description

T1 = T0 + *AR3+ The content of T0 is added to the content addressed by AR3 and the result is
stored in T1. AR3 is incremented by 1.

Before After

AR3 0302 AR3 0303

302 EF00 302 EF00

T0 3300 T0 3300

T1 0 T1 2200

CARRY 0 CARRY 1

ADD Addition

Instruction Set Descriptions5-14 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = ACy + (ACx << Tx) Yes 2 1 X

Opcode 0101 101E DDSS ss00

Operands ACx, ACy, Tx

Description This instruction performs an addition operation between an accumulator
content ACy and an accumulator content ACx shifted by the content of Tx.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (AC1 << T0) The content of AC1 shifted by the content of T0 is added to the content of AC0
and the result is stored in AC0.

 Addition ADD

5-15Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = ACy + (ACx << #SHIFTW) Yes 3 1 X

Opcode 0001 000E DDSS 0011 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs an addition operation between an accumulator
content ACy and an accumulator content ACx shifted by the 6-bit value,
SHIFTW.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (AC1 << #31) The content of AC1 shifted left by 31 bits is added to the content of AC0 and
the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-16 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = ACx + (K16 << #16) No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK SSDD 000x

Operands ACx, ACy, K16

Description This instruction performs an addition operation between an accumulator
content ACx and a 16-bit signed constant, K16, shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (#2E00h << #16) A signed 16-bit value (2E00h) shifted left by 16 bits is added to the
content of AC1 and the result is stored in AC0.

 Addition ADD

5-17Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ACy = ACx + (K16 << #SHFT) No 4 1 X

Opcode 0111 0000 KKKK KKKK KKKK KKKK SSDD SHFT

Operands ACx, ACy, K16, SHFT

Description This instruction performs an addition operation between an accumulator
content ACx and a 16-bit signed constant, K16, shifted left by the 4-bit value,
SHFT.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (#2E00h << #15) A signed 16-bit value (2E00h) shifted left by 15 bits is added to the
content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-18 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ACy = ACx + (Smem << Tx) No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss00

Operands ACx, ACy, Tx, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted by the
content of Tx.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

 Addition ADD

5-19Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC0 = AC1 + (*AR1 << T0) The content addressed by AR1 shifted left by the content of T0 is added to the
content of AC1 and the result is stored in AC0.

Before After

AC0 00 0000 0000 AC0 00 2330 0000

AC1 00 2300 0000 AC1 00 2300 0000

T0 000C T0 000C

AR1 0200 AR1 0200

200 0300 200 0300

SXMD 0 SXMD 0

M40 0 M40 0

ACOV0 0 ACOV0 0

CARRY 0 CARRY 1

ADD Addition

Instruction Set Descriptions5-20 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ACy = ACx + (Smem << #16) No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0100

Operands ACx, ACy, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted left by
16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. If the result
of the addition generates a carry, the CARRY status bit is set; otherwise,
the CARRY status bit is not affected.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (*AR3 << #16) The content addressed by AR3 shifted left by 16 bits is added to the
content of AC1 and the result is stored in AC0.

 Addition ADD

5-21Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] ACy = ACx + uns(Smem) + CARRY No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 100u

Operands ACx, ACy, Smem

Description This instruction performs an addition operation of the accumulator content
ACx, the content of a memory (Smem) location, and the value of the CARRY
status bit.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + uns(*AR3) + CARRY The CARRY status bit and the unsigned content addressed by AR3
are added to the content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-22 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] ACy = ACx + uns(Smem) No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 110u

Operands ACx, ACy, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + uns(*AR3) The unsigned content addressed by AR3 is added to the content of AC1 and
the result is stored in AC0.

 Addition ADD

5-23Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] ACy = ACx + (uns(Smem) << #SHIFTW) No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW SSDD 00xx

Operands ACx, ACy, SHIFTW, Smem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of a memory (Smem) location shifted by the 6-bit
value, SHIFTW.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (uns(*AR3) << #31) The unsigned content addressed by AR3 shifted left by 31 bits is
added to the content of AC1 and the result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-24 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] ACy = ACx + dbl(Lmem) No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 000n

Operands ACx, ACy, Lmem

Description This instruction performs an addition operation between an accumulator
content ACx and the content of data memory operand dbl(Lmem).

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + dbl(*AR3+) The content (long word) addressed by AR3 and AR3 + 1 is added to the
content of AC1 and the result is stored in AC0. Because this instruction is a
long-operand instruction, AR3 is incremented by 2 after the execution.

 Addition ADD

5-25Instruction Set DescriptionsSWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[15] ACx = (Xmem << #16) + (Ymem << #16) No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 00DD

Operands ACx, Xmem, Ymem

Description This instruction performs an addition operation between the content of data
memory operand Xmem shifted left 16 bits, and the content of data memory
operand Ymem shifted left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (*AR3 << #16) + (*AR4 << #16) The content addressed by AR3 shifted left by 16 bits is added
to the content addressed by AR4 shifted left by 16 bits and the
result is stored in AC0.

ADD Addition

Instruction Set Descriptions5-26 SWPU068E

Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[16] Smem = Smem + K16 No 4 1 X

Opcode 1111 0111 AAAA AAAI KKKK KKKK KKKK KKKK

Operands K16, Smem

Description This instruction performs an addition operation between a 16-bit signed
constant, K16, and the content of a memory (Smem) location.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD and
shifted by 16 bits to the MSBs before being added.

� Addition overflow is detected at bit position 31. If an overflow is detected,
accumulator 0 overflow status bit (ACOV0) is set.

� Addition carry report in CARRY status bit is extracted at bit position 31.

� If SATD is 1 when an overflow is detected, the result is saturated before
being stored in memory. Saturation values are 7FFFh or 8000h.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by SATD, SXMD

Affects ACOV0, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = *AR3 + #2E00h The content addressed by AR3 is added to a signed 16-bit value (2E00h) and the
result is stored back into the location addressed by AR3.

 Addition with Absolute Value ADDV

5-27Instruction Set DescriptionsSWPU068E

Addition with Absolute ValueADDV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + |ACx|) Yes 2 1 X

Opcode 0101 010E DDSS 000%

Operands ACx, ACy

Description This instruction computes the absolute value of accumulator ACx and adds the
result to accumulator ACy. This instruction is performed in the D-unit MAC:

� The absolute value of accumulator ACx is computed by multiplying
ACx(32–16) by 00001h or 1FFFFh depending on bit 32 of the source
accumulator.

� If FRCT = 1, the absolute value is multiplied by 2.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� The result of the absolute value of the higher part of ACx is in the lower
part of ACy.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

ADDV Addition with Absolute Value

Instruction Set Descriptions5-28 SWPU068E

See Also See the following other related instructions:

� Absolute Value

� Addition

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

Example

Syntax Description

AC0 = AC0 + |AC1| The absolute value of AC1 is added to the content of AC0 and the result is stored
in AC0.

 Addition with Parallel Store Accumulator Content to Memory ADD::MOV

5-29Instruction Set DescriptionsSWPU068E

Addition with Parallel Store Accumulator Content to MemoryADD::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ACx + (Xmem << #16),
Ymem = HI(ACy << T2)

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 100x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel: addition and store.

The first operation performs an addition between an accumulator content ACx
and the content of data memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. When
C54CM = 1, an intermediary shift operation is performed as if M40 is
locally set to 1 and no overflow detection, report, and saturation is done
after the shifting operation.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The second operation shifts the accumulator ACy by the content of T2 and
stores ACy(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACy(31−16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

ADD::MOV Addition with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-30 SWPU068E

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = ACx + (Xmem << #16),
Ymem = HI(saturate(uns(ACy << T2)))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = ACx + (Xmem << #16),
Ymem = HI(saturate(ACy << T2))

Status Bits Affected by C54CM, M40, RDM, SATD, SST, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition

� Store Accumulator Content to Memory

� Subtraction with Parallel Store Accumulator Content to Memory

Example

Syntax Description

AC0 = AC1 + (*AR3 << #16),
*AR4 = HI(AC0 << T2)

Both instructions are performed in parallel. The content addressed by
AR3 shifted left by 16 bits is added to the content of AC1 and the result
is stored in AC0. The content of AC0 is shifted by the content of T2, and
AC0(31−16) is stored at the address of AR4.

 Addition or Subtraction Conditionally (adsc) ADDSUBCC

5-31Instruction Set DescriptionsSWPU068E

Addition or Subtraction ConditionallyADDSUBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = adsc(Smem, ACx, TC1) No 3 1 X

[2] ACy = adsc(Smem, ACx, TC2) No 3 1 X

Opcode TC1 1101 1110 AAAA AAAI SSDD 0000

TC2 1101 1110 AAAA AAAI SSDD 0001

Operands ACx, ACy, Smem, TCx

Description This instruction evaluates the selected TCx status bit and based on the result
of the test, either an addition or a subtraction is performed. Evaluation of the
condition on the TCx status bit is performed during the Execute phase of the
instruction.

TC1 or TC2 Operation

0 ACy = ACx − (Smem << #16)

1 ACy = ACx + (Smem << #16)

� TCx = 0, then ACy = ACx − (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from accumulator ACx and stores the result in accumulator
ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� TCx = 1, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between accumulator ACx
and the content of a memory (Smem) location shifted left by 16 bits and
stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

ADDSUBCC Addition or Subtraction Conditionally (adsc)

Instruction Set Descriptions5-32 SWPU068E

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD, TCx

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

Example 1

Syntax Description

AC0 = adsc(*AR3, AC1, TC1) If TC1 = 1, the content addressed by AR3 shifted left by 16 bits is
added to the content of AC1 and the result is stored in AC0. If
TC1 = 0, the content addressed by AR3 shifted left by 16 bits is
subtracted from the content of AC1 and the result is stored in AC0.

Example 2

Syntax Description

AC1 = adsc(*AR1, AC0, TC2) TC2 = 1, the content addressed by AR1 shifted left by 16 bits is
added to the content of AC0 and the result is stored in AC1. The
result generated an overflow and a carry.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 0000 0000 AC1 01 1F00 0000

AR1 0200 AR1 0200

200 3300 200 3300

TC2 1 TC2 1

SXMD 0 SXMD 0

M40 0 M40 0

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

 Addition or Subtraction Conditionally with Shift (ads2c) ADDSUB2CC

5-33Instruction Set DescriptionsSWPU068E

Addition or Subtraction Conditionally with ShiftADDSUB2CC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ads2c(Smem, ACx, Tx, TC1, TC2) No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss10

Operands ACx, ACy, Tx, Smem, TC1, TC2

Description This instruction evaluates the TC1 status bit and based on the result of the test,
either an addition or a subtraction is performed; this instruction evaluates the
TC2 status bit and based on the result of the test, either a shift left by 16 bits
or the content of Tx is performed. Evaluation of the condition on the TCx
status bits is performed during the Execute phase of the instruction.

TC1 TC2 Operation

0 0 ACy = ACx − (Smem << Tx)

0 1 ACy = ACx − (Smem << #16)

1 0 ACy = ACx + (Smem << Tx)

1 1 ACy = ACx + (Smem << #16)

� TC1 = 0 and TC2 = 0, then ACy = ACx − (Smem << Tx):

This instruction subtracts the content of a memory (Smem) location shifted
left by the content of Tx from an accumulator ACx and stores the result in
accumulator ACy.

� TC1 = 0 and TC2 = 1, then ACy = ACx − (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from an accumulator ACx and stores the result in
accumulator ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the
borrow bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

ADDSUB2CC Addition or Subtraction Conditionally with Shift (ads2c)

Instruction Set Descriptions5-34 SWPU068E

� TC1 = 1 and TC2 = 0, then ACy = ACx + (Smem << Tx):

This instruction performs an addition operation between an accumulator
ACx and the content of a memory (Smem) location shifted left by the
content of Tx and stores the result in accumulator ACy.

� TC1 = 1 and TC2 = 1, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between an accumulator
ACx and the content of a memory (Smem) location shifted left by 16 bits
and stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD, TC1, TC2

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition, Subtraction, or Move Accumulator Content Conditionally

 Addition or Subtraction Conditionally with Shift (ads2c) ADDSUB2CC

5-35Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC2 = ads2c(*AR2, AC0, T1, TC1, TC2) TC1 = 1 and TC2 = 0, the content addressed by AR2
shifted left by the content of T1 is added to the content of
AC0 and the result is stored in AC2. The result generated
an overflow.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC2 00 0000 0000 AC2 00 EC00 CC00

AR2 0201 AR2 0201

201 3300 201 3300

T1 0002 T1 0002

TC1 1 TC1 1

TC2 0 TC2 0

M40 0 M40 0

ACOV2 0 ACOV2 1

CARRY 0 CARRY 0

ADDSUBCC Addition, Subtraction, or Move Accumulator Content Conditionally (adsc)

Instruction Set Descriptions5-36 SWPU068E

Addition, Subtraction, or Move Accumulator Content ConditionallyADDSUBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = adsc(Smem, ACx, TC1, TC2) No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0010

Operands ACx, ACy, Smem, TC1, TC2

Description This instruction evaluates the TCx status bits and based on the result of the
test, an addition, a move, or a subtraction is performed. Evaluation of the
condition on the TCx status bits is performed during the Execute phase of the
instruction.

TC1 TC2 Operation

0 0 ACy = ACx − (Smem << #16)

0 1 ACy = ACx

1 0 ACy = ACx + (Smem << #16)

1 1 ACy = ACx

� TC2 = 1, then ACy = ACx:

This instruction moves the content of ACx to ACy.

� The 40-bit move operation is performed in the D-unit ALU.

� During the 40-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVy) is set.

� the destination register (ACy) is saturated according to SATD.

� TC1 = 0 and TC2 = 0, then ACy = ACx − (Smem << #16):

This instruction subtracts the content of a memory (Smem) location shifted
left by 16 bits from accumulator ACx and stores the result in accumulator
ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

 Addition, Subtraction, or Move Accumulator Content Conditionally (adsc) ADDSUBCC

5-37Instruction Set DescriptionsSWPU068E

� TC1 = 1 and TC2 = 0, then ACy = ACx + (Smem << #16):

This instruction performs an addition operation between accumulator ACx
and the content of a memory (Smem) location shifted left by 16 bits and
stores the result in accumulator ACy.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD, TC1, TC2

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

Example

Syntax Description

AC0 = adsc(*AR3, AC1, TC1, TC2) If TC2 = 1, the content of AC1 is stored in AC0. If TC2 = 0 and
TC1 = 1, the content addressed by AR3 shifted left by 16 bits is
added to the content of AC1 and the result is stored in AC0. If
TC2 = 0 and TC1 = 0, the content addressed by AR3 shifted left
by 16 bits is subtracted from the content of AC1 and the result is
stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-38 SWPU068E

Bitwise ANDAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst & src Yes 2 1 X

[2] dst = src & k8 Yes 3 1 X

[3] dst = src & k16 No 4 1 X

[4] dst = src & Smem No 3 1 X

[5] ACy = ACy & (ACx <<< #SHIFTW) Yes 3 1 X

[6] ACy = ACx & (k16 <<< #16) No 4 1 X

[7] ACy = ACx & (k16 <<< #SHFT) No 4 1 X

[8] Smem = Smem & k16 No 4 1 X

Description These instructions perform a bitwise AND operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� Bitwise AND Memory with Immediate Value and Compare to Zero

� Bitwise OR

� Bitwise Exclusive OR (XOR)

 Bitwise AND AND

5-39Instruction Set DescriptionsSWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst & src Yes 2 1 X

Opcode 0010 100E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise AND operation between two registers.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 & AC0 The content of AC0 is ANDed with the content of AC1 and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 0E 2340 4640

AND Bitwise AND

Instruction Set Descriptions5-40 SWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = src & k8 Yes 3 1 X

Opcode 0001 100E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and an 8-bit value, k8.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 & #FFh The content of AC1 is ANDed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

 Bitwise AND AND

5-41Instruction Set DescriptionsSWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = src & k16 No 4 1 X

Opcode 0111 1101 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and a 16-bit unsigned constant, k16.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 & #FFFFh The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh) and the
result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-42 SWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dst = src & Smem No 3 1 X

Opcode 1101 1001 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise AND operation between a source (src)
register content and a memory (Smem) location.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 & *AR3 The content of AC1 is ANDed with the content addressed by AR3 and the result is
stored in AC0.

 Bitwise AND AND

5-43Instruction Set DescriptionsSWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = ACy & (ACx <<< #SHIFTW) Yes 3 1 X

Opcode 0001 000E DDSS 0000 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise AND operation between an accumulator
(ACy) content and an accumulator (ACx) content shifted by the 6-bit value,
SHIFTW.

� The shift and AND operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is locally
set to 1. The 8 upper bits of the 40-bit intermediary result are not cleared.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 & (AC1 <<< #30) The content of AC0 is ANDed with the content of AC1 logically shifted left
by 30 bits and the result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-44 SWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = ACx & (k16 <<< #16) No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 010x

Operands ACx, ACy, k16

Description This instruction performs a bitwise AND operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 & (#FFFFh <<< #16) The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

 Bitwise AND AND

5-45Instruction Set DescriptionsSWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = ACx & (k16 <<< #SHFT) No 4 1 X

Opcode 0111 0010 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise AND operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by the 4-bit
value, SHFT.

� The shift and AND operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 & (#FFFFh <<< #15) The content of AC1 is ANDed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

AND Bitwise AND

Instruction Set Descriptions5-46 SWPU068E

Bitwise AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] Smem = Smem & k16 No 4 1 X

Opcode 1111 0100 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise AND operation between a memory (Smem)
location and a 16-bit unsigned constant, k16.

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR1 = *AR1 & #0FC0 The content addressed by AR1 is ANDed with the unsigned 16-bit value (FC0h)
and the result is stored in the location addressed by AR1.

Before After

*AR1 5678 *AR1 0640

 Bitwise AND Memory with Immediate Value and Compare to Zero BAND

5-47Instruction Set DescriptionsSWPU068E

Bitwise AND Memory with Immediate Value and Compare to ZeroBAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = Smem & k16 No 4 1 X

[2] TC2 = Smem & k16 No 4 1 X

Opcode TC1 1111 0010 AAAA AAAI kkkk kkkk kkkk kkkk

TC2 1111 0011 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem, TCx

Description This instruction performs a bit field manipulation in the A-unit ALU. The 16-bit
field mask, k16, is ANDed with the memory (Smem) operand and the result is
compared to 0:

if(((Smem) AND k16) == 0)

TCx = 0

else

TCx = 1

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Bitwise AND

Example

Syntax Description

TC1 = *AR0 & #0060h The unsigned 16-bit value (0060h) is ANDed with the content addressed by
AR0. The result is 1, TC1 is set to 1.

Before After

*AR0 0040 *AR0 0040

TC1 0 TC1 1

OR Bitwise OR

Instruction Set Descriptions5-48 SWPU068E

Bitwise OROR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst | src Yes 2 1 X

[2] dst = src | k8 Yes 3 1 X

[3] dst = src | k16 No 4 1 X

[4] dst = src | Smem No 3 1 X

[5] ACy = ACy | (ACx <<< #SHIFTW) Yes 3 1 X

[6] ACy = ACx | (k16 <<< #16) No 4 1 X

[7] ACy = ACx | (k16 <<< #SHFT) No 4 1 X

[8] Smem = Smem | k16 No 4 1 X

Description These instructions perform a bitwise OR operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� Bitwise AND

� Bitwise Exclusive OR (XOR)

 Bitwise OR OR

5-49Instruction Set DescriptionsSWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst | src Yes 2 1 X

Opcode 0010 101E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise OR operation between two registers.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 | AC1 The content of AC0 is ORed with the content of AC1 and the result is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-50 SWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = src | k8 Yes 3 1 X

Opcode 0001 101E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and an 8-bit value, k8.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 | #FFh The content of AC1 is ORed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

 Bitwise OR OR

5-51Instruction Set DescriptionsSWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = src | k16 No 4 1 X

Opcode 0111 1110 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and a 16-bit unsigned constantk16.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 | #FFFFh The content of AC1 is ORed with the unsigned 16-bit value (FFFFh) and the result
is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-52 SWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dst = src | Smem No 3 1 X

Opcode 1101 1010 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise OR operation between a source (src)
register content and a memory (Smem) location.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 | *AR3 The content of AC1 is ORed with the content addressed by AR3 and the result is
stored in AC0.

 Bitwise OR OR

5-53Instruction Set DescriptionsSWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = ACy | (ACx <<< #SHIFTW) Yes 3 1 X

Opcode 0001 000E DDSS 0001 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise OR operation between an accumulator
(ACy) content and and an accumulator (ACx) content shifted by the 6-bit value,
SHIFTW.

� The shift and OR operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is locally
set to 1. The 8 upper bits of the 40-bit intermediary result are not cleared.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 | (AC0 <<< #4) The content of AC1 is ORed with the content of AC0 logically shifted left by
4 bits and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 0F F754 FE78

OR Bitwise OR

Instruction Set Descriptions5-54 SWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = ACx | (k16 <<< #16) No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 011x

Operands ACx, ACy, k16

Description This instruction performs a bitwise OR operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 | (#FFFFh <<< #16) The content of AC1 is ORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

 Bitwise OR OR

5-55Instruction Set DescriptionsSWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = ACx | (k16 <<< #SHFT) No 4 1 X

Opcode 0111 0011 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise OR operation between an accumulator
(ACx) content and a 16-bit unsigned constant, k16, shifted left by the 4-bit
value, SHFT.

� The shift and OR operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 | (#FFFFh <<< #15) The content of AC1 is ORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

OR Bitwise OR

Instruction Set Descriptions5-56 SWPU068E

Bitwise OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] Smem = Smem | k16 No 4 1 X

Opcode 1111 0101 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise OR operation between a memory (Smem)
location and a 16-bit unsigned constant, k16.

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR1 = *AR1 | #0FC0h The content addressed by AR1 is ORed with the unsigned 16-bit value (FC0h)
and the result is stored in the location addressed by AR1.

Before After

*AR1 5678 *AR1 5FF8

 Bitwise Exclusive OR (XOR) XOR

5-57Instruction Set DescriptionsSWPU068E

Bitwise Exclusive OR (XOR)XOR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst ^ src Yes 2 1 X

[2] dst = src ^ k8 Yes 3 1 X

[3] dst = src ^ k16 No 4 1 X

[4] dst = src ^ Smem No 3 1 X

[5] ACy = ACy ^ (ACx <<< #SHIFTW) Yes 3 1 X

[6] ACy = ACx ^ (k16 <<< #16) No 4 1 X

[7] ACy = ACx ^ (k16 <<< #SHFT) No 4 1 X

[8] Smem = Smem ^ k16 No 4 1 X

Description These instructions perform a bitwise exclusive-OR (XOR) operation:

� In the D-unit, if the destination operand is an accumulator.

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register.

� In the A-unit ALU, if the destination operand is the memory.

Status Bits Affected by C54CM

Affects none

See Also See the following other related instructions:

� Bitwise AND

� Bitwise OR

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-58 SWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst ^ src Yes 2 1 X

Opcode 0010 110E FSSS FDDD

Operands dst, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between
two registers.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 ^ AC0 The content of AC0 is XORed with the content of AC1 and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 0F E340 5678 AC1 71 C015 19B8

 Bitwise Exclusive OR (XOR) XOR

5-59Instruction Set DescriptionsSWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = src ^ k8 Yes 3 1 X

Opcode 0001 110E kkkk kkkk FDDD FSSS

Operands dst, k8, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and an 8-bit value, k8.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 ^ #FFh The content of AC1 is XORed with the unsigned 8-bit value (FFh) and the result is
stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-60 SWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = src ^ k16 No 4 1 X

Opcode 0111 1111 kkkk kkkk kkkk kkkk FDDD FSSS

Operands dst, k16, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and a 16-bit unsigned constant, k16.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 ^ #FFFFh The content of AC1 is XORed with the unsigned 16-bit value (FFFFh) and the
result is stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-61Instruction Set DescriptionsSWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dst = src ^ Smem No 3 1 X

Opcode 1101 1011 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
source (src) register content and a memory (Smem) location.

� When the destination (dst) operand is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 ^ *AR3 The content of AC1 is XORed with the content addressed by AR3 and the result is
stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-62 SWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = ACy ^ (ACx <<< #SHIFTW) Yes 3 1 X

Opcode 0001 000E DDSS 0010 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACy) content and an accumulator (ACx) content shifted by the
6-bit value, SHIFTW.

� The shift and XOR operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (ACx) is shifted by a 6-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the intermediary logical shift is performed as if M40 is locally
set to 1. The 8 upper bits of the 40-bit intermediary result are not cleared.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 ^ (AC1 <<< #30) The content of AC0 is XORed with the content of AC1 logically shifted left
by 30 bits and the result is stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-63Instruction Set DescriptionsSWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = ACx ^ (k16 <<< #16) No 4 1 X

Opcode 0111 1010 kkkk kkkk kkkk kkkk SSDD 100x

Operands ACx, ACy, k16

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACx) content and a 16-bit unsigned constant, k16, shifted left by
16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are zero extended to 40 bits.

� The input operand (k16) is shifted 16 bits to the MSBs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 ^ (#FFFFh <<< #16) The content of AC1 is XORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 16 bits and the result is stored in AC0.

XOR Bitwise Exclusive OR (XOR)

Instruction Set Descriptions5-64 SWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = ACx ^ (k16 <<< #SHFT) No 4 1 X

Opcode 0111 0100 kkkk kkkk kkkk kkkk SSDD SHFT

Operands ACx, ACy, k16, SHFT

Description This instruction performs a bitwise exclusive-OR (XOR) operation between an
accumulator (ACx) content and a 16-bit unsigned constant, k16, shifted left by
the 4-bit value, SHFT.

� The shift and XOR operations are performed in one cycle in the D-unit
shifter.

� When M40 = 0 and C54CM = 0, input operands ACx(31−0) are zero
extended to 40 bits. Otherwise, ACx(39−0) is used as is.

� The input operand (k16) is shifted by a 4-bit immediate value in the D-unit
shifter.

� The CARRY status bit is not affected by the logical shift operation.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 ^ (#FFFFh <<< #15) The content of AC1 is XORed with the unsigned 16-bit value (FFFFh)
logically shifted left by 15 bits and the result is stored in AC0.

 Bitwise Exclusive OR (XOR) XOR

5-65Instruction Set DescriptionsSWPU068E

Bitwise Exclusive OR (XOR)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] Smem = Smem ^ k16 No 4 1 X

Opcode 1111 0110 AAAA AAAI kkkk kkkk kkkk kkkk

Operands k16, Smem

Description This instruction performs a bitwise exclusive-OR (XOR) operation between a
memory (Smem) location and a 16-bit unsigned constant, k16.

� The operation is performed on 16 bits in the A-unit ALU.

� The result is stored in memory.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = *AR3 ^ #FFFFh The content addressed by AR3 is XORed with the unsigned 16-bit value (FFFFh)
and the result is stored in the location addressed by AR3.

BCC Branch Conditionally (if goto)

Instruction Set Descriptions5-66 SWPU068E

Branch ConditionallyBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (cond) goto l4 No 2 6/5 R

[2] if (cond) goto L8 Yes 3 6/5 R

[3] if (cond) goto L16 No 4 6/5 R

[4] if (cond) goto P24 No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Description These instructions evaluate a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into l4, Lx, or P24. There is a 1-cycle latency
on the condition setting. A single condition can be tested as determined by the
cond field of the instruction. See Table 1−3 for a list of conditions.

The instruction selection depends on the branch offset between the current PC
value and the program branch address specified by the label.

These instructions cannot be repeated.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

See Also See the following other related instructions:

� Branch Unconditionally

� Branch on Auxiliary Register Not Zero

� Call Conditionally

� Compare and Branch

 Branch Conditionally (if goto) BCC

5-67Instruction Set DescriptionsSWPU068E

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (cond) goto l4 No 2 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 0lll 1CCC CCCC

Operands cond, l4

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into l4. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1−3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

if (AC0 != #0) goto branch The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

if (AC0 != #0) goto branch

… … address: 004057

… …
branch
:

…… 00405A

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00405A

BCC Branch Conditionally (if goto)

Instruction Set Descriptions5-68 SWPU068E

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] if (cond) goto L8 Yes 3 6/5 R

[3] if (cond) goto L16 No 4 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode L8 0000 010E xCCC CCCC LLLL LLLL

L16 0110 1101 xCCC CCCC LLLL LLLL LLLL LLLL

Operands cond, Lx

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into Lx. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1−3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

if (AC0 != #0) goto branch The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

branch
:

…… 00305A

if (AC0 != #0) goto branch

… … address: 004057

… …

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00305A

 Branch Conditionally (if goto) BCC

5-69Instruction Set DescriptionsSWPU068E

Branch Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[4] if (cond) goto P24 No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1000 xCCC CCCC PPPP PPPP PPPP PPPP PPPP PPPP

Operands cond, P24

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a branch occurs to the
program address label assembled into P24. There is a 1-cycle latency on the
condition setting. A single condition can be tested as determined by the cond
field of the instruction. See Table 1−3 for a list of conditions.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

if (AC0 != #0) goto branch The content of AC0 is not equal to 0, control is passed to the program address
label defined by branch.

.sect “code1”

… …
if (AC0 != #0) goto branch

… … address: 004057

.sect “code2”

branch
:

…… 00F05A

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004055 PC 00F05A

B Branch Unconditionally (goto)

Instruction Set Descriptions5-70 SWPU068E

Branch UnconditionallyB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] goto ACx No 2 10 X

[2] goto L7 Yes 2 6† AD

[3] goto L16 Yes 3 6† AD

[4] goto P24 No 4 5 D

† This instruction executes in 3 cycles if the addressed instruction is in the instruction buffer unit.

Description This instruction branches to a 24-bit program address defined by the content
of the 24 lowest bits of an accumulator (ACx), or to a program address defined
by the program address label assembled into Lx or P24.

These instructions cannot be repeated.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Branch Conditionally

� Branch on Auxiliary Register Not Zero

� Call Unconditionally

� Compare and Branch

 Branch Unconditionally (goto) B

5-71Instruction Set DescriptionsSWPU068E

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] goto ACx No 2 10 X

Opcode 1001 0001 xxxx xxSS

Operands ACx

Description This instruction branches to a 24-bit program address defined by the content
of the 24 lowest bits of an accumulator (ACx).

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

goto AC0 Program control is passed to the program address defined by the content of AC0(23–0).

Before After

AC0 00 0000 403D AC0 00 0000 403D

PC 001F0A PC 00403D

B Branch Unconditionally (goto)

Instruction Set Descriptions5-72 SWPU068E

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] goto L7 Yes 2 6 AD

[3] goto L16 Yes 3 6 AD

† Executes in 3 cycles if the addressed instruction is in the instruction buffer unit.

Opcode L7 0100 101E 0LLL LLLL

L16 0000 011E LLLL LLLL LLLL LLLL

Operands Lx

Description This instruction branches to a program address defined by a program address
label assembled into Lx.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

goto branch Program control is passed to the absolute address defined by branch.

goto branch

AC0 = #1 address: 004044

… …
branch: … … 006047

AC0 = #0

Before After

PC 004042 PC 006047

AC0 00 0000 0001 AC0 00 0000 0000

 Branch Unconditionally (goto) B

5-73Instruction Set DescriptionsSWPU068E

Branch Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] goto P24 No 4 5 D

Opcode 0110 1010 PPPP PPPP PPPP PPPP PPPP PPPP

Operands P24

Description This instruction branches to a program address defined by a program address
label assembled into P24.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

goto branch Program control is passed to the absolute address defined by branch.

goto branch

AC0 = #1 address: 004044

… …
branch: … … 006047

AC0 = #0

Before After

PC 004042 PC 006047

AC0 00 0000 0001 AC0 00 0000 0000

BCC Branch on Auxiliary Register Not Zero (if goto)

Instruction Set Descriptions5-74 SWPU068E

Branch on Auxiliary Register Not ZeroBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (ARn_mod != #0) goto L16 No 4 6/5 AD

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 1111 1100 AAAA AAAI LLLL LLLL LLLL LLLL

Operands ARn_mod, L16

Description This instruction performs a conditional branch (selected auxiliary register
content not equal to 0) of the program counter (PC). The program branch
address is specified as a 16-bit signed offset, L16, relative to PC. Use this
instruction to branch within a 64K-byte window centered on the current PC
value.

The possible addressing operands can be grouped into three categories:

� ARx not modified (ARx as base pointer), some examples:
*AR1; No modification or offset
*AR1(#15); Use 16-bit immediate value (15) as offset
*AR1(T0); Use content of T0 as offset
*AR1(short(#4)); Use 3-bit immediate value (4) as offset

� ARx modified before being compared to 0, some examples:
*−AR1; Decrement by 1 before comparison
*+AR1(#20); Add 16-bit immediate value (20) before comparison

� ARx modified after being compared to 0, some examples:
*AR1+; Increment by 1 after comparison
*(AR1 − T1); Subtract content of T1 after comparison

1) The content of the selected auxiliary register (ARn) is premodified in the
address generation unit.

2) The (premodified) content of ARn is compared to 0 and sets the condition
in the address phase of the pipeline.

3) If the condition is not true, a branch occurs. If the condition is true, the
instructions are executed in sequence.

4) The content of ARn is postmodified in the address generation unit.

 Branch on Auxiliary Register Not Zero (if goto) BCC

5-75Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

The premodifier *ARn(T0) is not available; *ARn(AR0) is available.

The postmodifiers *(ARn + T0) and *(ARn − T0) are not available;
*(ARn + AR0) and *(ARn − AR0) are available.

The legality of the modifier usage is checked by the assembler when using the
.c54cm_on and .c54cm_off assembler directives.

Status Bits Affected by C54CM

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Branch Conditionally

� Branch Unconditionally

� Compare and Branch

Example 1

Syntax Description

if (*AR1(#6) != #0) goto branch The content of AR1 is compared to 0. The content is not 0, program control
is passed to the program address label defined by branch.

If (*AR1(#6) != #0) goto branch address: 004004

… … ; 00400A

… …
branch
:

… … ; 00400C

Before After

AR1 0005 AR1 0005

PC 004004 PC 00400C

BCC Branch on Auxiliary Register Not Zero (if goto)

Instruction Set Descriptions5-76 SWPU068E

Example 2

Syntax Description

if (*AR3− != #0) goto branch The content of AR3 is compared to 0. The content is 0, program control is
passed to the next instruction (the branch is not taken). AR3 is decremented
by 1 after the comparison.

If (*AR3– != #0) goto branch address: 00400F

… … ; 004013

… …
branch
:

… … ; 004015

Before After

AR3 0000 AR3 FFFF

PC 00400F PC 004013

 Call Conditionally (if call) CALLCC

5-77Instruction Set DescriptionsSWPU068E

Call ConditionallyCALLCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (cond) call L16 No 4 6/5 R

[2] if (cond) call P24 No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Description These instructions evaluate a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
L16 or P24. There is a 1-cycle latency on the condition setting. A single
condition can be tested as determined by the cond field of the instruction. See
Table 1−3 for a list of conditions.

Before beginning a called subroutine, the CPU automatically saves the value
of two internal registers: the program counter (PC) and a loop context register.
The CPU can use these values to re-establish the context of the interrupted
program sequence when the subroutine is done.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks (in memory). When the CPU returns
from a subroutine, the speed at which these values are restored is dependent
on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions.

The instruction selection depends on the branch offset between the current PC
value and program subroutine address specified by the label.

These instructions cannot be repeated.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

CALLCC Call Conditionally (if call)

Instruction Set Descriptions5-78 SWPU068E

See Also See the following other related instructions:

� Branch Conditionally

� Call Unconditionally

� Return Conditionally

� Return Unconditionally

 Call Conditionally (if call) CALLCC

5-79Instruction Set DescriptionsSWPU068E

Call Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (cond) call L16 No 4 6/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1110 xCCC CCCC LLLL LLLL LLLL LLLL

Operands cond, L16

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
L16. There is a 1-cycle latency on the condition setting. A single condition can
be tested as determined by the cond field of the instruction. See Table 1−3 for
a list of conditions.

When a subroutine call occurs in the slow-return process (default), the return
address (from the PC) and the loop context bits are stored to the stacks. For
fast-return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the read phase
of the pipeline. The 16 LSBs of the return address, from the program
counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the read
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP = x − 1 (Loop bits):PC(23−16)

After
SP = y − 1 PC(15−0)

After
Save → SSP = x − 1 (Loop bits):PC(23−16)

After
Save → SP = y − 1 PC(15−0)

Before → SSP = x Previously saved data
Before → SP = y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

CALLCC Call Conditionally (if call)

Instruction Set Descriptions5-80 SWPU068E

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

if (AC1 >= #2000h) call (subroutine) The content of AC1 is equal to or greater than 2000h, control is
passed to the program address label, subroutine. The program
counter (PC) is loaded with the subroutine program address.

 Call Conditionally (if call) CALLCC

5-81Instruction Set DescriptionsSWPU068E

Call Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[2] if (cond) call P24 No 5 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1001 xCCC CCCC PPPP PPPP PPPP PPPP PPPP PPPP

Operands cond, P24

Description This instruction evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a subroutine call occurs to
the program address defined by the program address label assembled into
P24. There is a 1-cycle latency on the condition setting. A single condition can
be tested as determined by the cond field of the instruction. See Table 1−3 for
a list of conditions.

When a subroutine call occurs in the slow-return process (default), the return
address (from the PC) and the loop context bits are stored to the stacks. For
fast-return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the read phase
of the pipeline. The 16 LSBs of the return address, from the program
counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the read
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP = x − 1 (Loop bits):PC(23−16)

After
SP = y − 1 PC(15−0)

After
Save → SSP = x − 1 (Loop bits):PC(23−16)

After
Save → SP = y − 1 PC(15−0)

Before → SSP = x Previously saved data
Before → SP = y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

CALLCC Call Conditionally (if call)

Instruction Set Descriptions5-82 SWPU068E

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example

Syntax Description

if (TC1) call FOO If TC1 is set to 1, control is passed to the program address label (FOO) assembled into
an absolute address defined by the 24-bit value. If TC1 is cleared to 0, the program
counter is incremented by 6 and the next instruction is executed.

 Call Unconditionally (call) CALL

5-83Instruction Set DescriptionsSWPU068E

Call UnconditionallyCALL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] call ACx No 2 10 X

[2] call L16 Yes 3 6 AD

[3] call P24 No 4 5 D

Description This instruction passes control to a specified subroutine program address
defined by the content of the 24 lowest bits of the accumulator, ACx, or a
program address label assembled into L16 or P24.

Before beginning a called subroutine, the CPU automatically saves the value
of two internal registers: the program counter (PC) and a loop context register.
The CPU can use these values to re-establish the context of the interrupted
program sequence when the subroutine is done.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks (in memory). When the CPU returns
from a subroutine, the speed at which these values are restored is dependent
on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions.

These instructions cannot be repeated.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Branch Unconditionally

� Call Conditionally

� Return Conditionally

� Return Unconditionally

CALL Call Unconditionally (call)

Instruction Set Descriptions5-84 SWPU068E

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] call ACx No 2 10 X

Opcode 1001 0010 xxxx xxSS

Operands ACx

Description This instruction passes control to a specified subroutine program address
defined by the content of the 24 lowest bits of the accumulator, ACx.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP = x − 1 (Loop bits):PC(23−16)

After
SP = y − 1 PC(15−0)

After
Save → SSP = x − 1 (Loop bits):PC(23−16)

After
Save → SP = y − 1 PC(15−0)

Before → SSP = x Previously saved data
Before → SP = y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

call AC0 Program control is passed to the program address defined by the content of AC0(23–0).

 Call Unconditionally (call) CALL

5-85Instruction Set DescriptionsSWPU068E

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] call L16 Yes 3 6 AD

Opcode 0000 100E LLLL LLLL LLLL LLLL

Operands L16

Description This instruction passes control to a specified subroutine program address
defined by a program address label assembled into L16.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP = x − 1 (Loop bits):PC(23−16)

After
SP = y − 1 PC(15−0)

After
Save → SSP = x − 1 (Loop bits):PC(23−16)

After
Save → SP = y − 1 PC(15−0)

Before → SSP = x Previously saved data
Before → SP = y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

call FOO Program control is passed to the program address label (FOO) assembled into the signed
16-bit offset value relative to the program counter register.

CALL Call Unconditionally (call)

Instruction Set Descriptions5-86 SWPU068E

Call Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] call P24 No 4 5 D

Opcode 0110 1100 PPPP PPPP PPPP PPPP PPPP PPPP

Operands P24

Description This instruction passes control to a specified subroutine program address
defined by a program address label assembled into P24.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are stored to the stacks. For fast-return mode operation, see
the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The 16 LSBs of the return address, from the
program counter (PC), of the called subroutine are pushed to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The loop context bits concatenated with the 8 MSBs
of the return address are pushed to the top of SSP.

� The PC is loaded with the subroutine program address. The active control
flow execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
SSP = x − 1 (Loop bits):PC(23−16)

After
SP = y − 1 PC(15−0)

After
Save → SSP = x − 1 (Loop bits):PC(23−16)

After
Save → SP = y − 1 PC(15−0)

Before → SSP = x Previously saved data
Before → SP = y Previously saved data

Before
Save → SSP = x Previously saved data

Before
Save → SP = y Previously saved data

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

call FOO Program control is passed to the program address label (FOO) assembled into an absolute
address defined by the 24-bit value.

 Circular Addressing Qualifier (circular) .CR

5-87Instruction Set DescriptionsSWPU068E

Circular Addressing Qualifier.CR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] circular() No 1 1 AD

Opcode 1001 1101

Operands none

Description This instruction is an instruction qualifier that can be paralleled only with any
instruction making an indirect Smem, Xmem, Ymem, Lmem, Baddr, or Cmem
addressing or mar instructions. This instruction cannot be executed in parallel
with any other types of instructions and it cannot be executed as a stand-alone
instruction (assembler generates an error message).

When this instruction is used in parallel, all modifications of ARx and CDP
pointer registers used in the indirect addressing mode are done circularly (as
if ST2_55 register bits 0 to 8 were set to 1).

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction does not affect *ARn, *ARn+, *ARn−, and
*ARn(DR0) addressing modes of dual memory access (Xmem/Ymem)
instruction.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

BCLR Clear Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-88 SWPU068E

Clear Accumulator, Auxiliary, or Temporary Register BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(src, Baddr) = #0 No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 001x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction clears to 0 a single bit, as defined by the bit addressing mode,
Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Clear Status Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Set Accumulator, Auxiliary, or Temporary Register Bit

Example

Syntax Description

bit(AC0, AR3) = #0 The bit at the position defined by the content of AR3(4–0) in AC0 is cleared to 0.

 Clear Memory Bit BCLR

5-89Instruction Set DescriptionsSWPU068E

Clear Memory BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(Smem, src) = #0 No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 1101

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
clears to 0 a single bit, as defined by the content of the source (src) operand,
of a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Clear Status Register Bit

� Complement Memory Bit

� Set Memory Bit

Example

Syntax Description

bit(*AR3, AC0) = #0 The bit at the position defined by AC0(3–0) in the content addressed by AR3 is
cleared to 0.

BCLR Clear Status Register Bit

Instruction Set Descriptions5-90 SWPU068E

Clear Status Register BitBCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(ST0, k4) = #0 Yes 2 1 X

[2] bit(ST1, k4) = #0 Yes 2 1 X

[3] bit(ST2, k4) = #0 Yes 2 1 X

[4] bit(ST3, k4) = #0 Yes 2 1† X

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed
and the instruction is executed in 5 cycles regardless of the instruction context.

Opcode ST0 0100 011E kkkk 0000

ST1 0100 011E kkkk 0010

ST2 0100 011E kkkk 0100

ST3 0100 011E kkkk 0110

Operands k4, STx

Description These instructions perform a bit manipulation in the A-unit ALU.

These instructions clear to 0 a single bit, as defined by a 4-bit immediate value,
k4, in the selected status register (ST0, ST1, ST2, or ST3).

It is not allowed to access DP register mapped in ST0 register with
bit(ST0, k4) = #0 instruction. Therefore, k4 cannot have a value of 0−8.

It is not allowed to access ASM bit field in ST1 with bit(ST1, k4) = #0 instruction.
Therefore, k4 cannot have a value of 0−4.

Compatibility with C54x devices (C54CM = 1)

C55x DSP status registers bit mapping (Figure 5−1, page 5-92) does not
correspond to C54x DSP status register bits.

Status Bits Affected by none

Affects Selected status bits

Repeat This instruction cannot be repeated.

 Clear Status Register Bit BCLR

5-91Instruction Set DescriptionsSWPU068E

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Clear Memory Bit

� Set Status Register Bit

Example

Syntax Description

bit(ST2, #ST2_AR2LC) = #0; AR2LC = bit 2 The ST2 bit position defined by the label (ST2_AR2LC, bit 2)
is cleared to 0.

Before After

ST2_55 0006 ST2_55 0002

BCLR Clear Status Register Bit

Instruction Set Descriptions5-92 SWPU068E

Figure 5−1. Status Registers Bit Mapping

ST0_55

15 14 13 12 11 10 9

ACOV2† ACOV3† TC1† TC2 CARRY ACOV0 ACOV1

R/W−0 R/W−0 R/W−1 R/W−1 R/W−1 R/W−0 R/W−0

8 0

DP

R/W−0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40† SATD SXMD

R/W−0 R/W−0 R/W−1 R/W−0 R/W−1 R/W−0 R/W−0 R/W−1

7 6 5 4 0

C16 FRCT C54CM† ASM

R/W−0 R/W−0 R/W−1 R/W−0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

R/W−0 R/W−1 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

ST3_55

15 14 13 12 11 8

CAFRZ† CAEN† CACLR† HINT‡ Reserved (always write 1100b)

R/W−0 R/W−0 R/W−0 R/W−1

7 6 5 4 3 2 1 0

CBERR† MPNMC§ SATA† Reserved CLKOFF SMUL SST

R/W−0 R/W−pins R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset
† Highlighted bit: If you write to the protected address of the status register, a write to this bit has no effect, and the bit always

appears as a 0 during read operations.
‡ The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the documentation for the specific C55x DSP.
§ The reset value of MPNMC may be dependent on the state of predefined pins at reset. To check this for a particular C55x DSP,

see the boot loader section of its data sheet.

 Compare Accumulator, Auxiliary, or Temporary Register Content CMP

5-93Instruction Set DescriptionsSWPU068E

Compare Accumulator, Auxiliary, or Temporary Register ContentCMP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = uns(src RELOP dst) Yes 3 1 X

[2] TC2 = uns(src RELOP dst) Yes 3 1 X

Opcode TC1 0001 001E FSSS cc00 FDDD xux0

TC2 0001 001E FSSS cc00 FDDD xux1

Operands dst, RELOP, src, TCx

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0.

The comparison depends on the optional uns keyword and on M40 for
accumulator comparisons. As the following table shows, the uns keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons.

uns src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

CMP Compare Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-94 SWPU068E

Status Bits Affected by C54CM, M40

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content with AND

� Compare Accumulator, Auxiliary, or Temporary Register Content with OR

� Compare Accumulator, Auxiliary, or Temporary Register Content Maximum

� Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

� Compare Memory with Immediate Value

Example 1

Syntax Description

TC1= AC1 = = T1 The signed content of AC1(15−0) is compared to the content of T1 and because
they are equal, TC1 is set to 1.

Before After

AC1 00 0028 0400 AC1 00 0028 0400

T1 0400 T1 0400

TC1 0 TC1 1

Example 2

Syntax Description

TC1= T1 > = AC1 The content of T1 is compared to the signed content of AC1(15−0). The content of
T1 is greater than the content of AC1, TC1 is set to 1.

Before After

T1 0500 T1 0500

AC1 80 0000 0400 AC1 80 0000 0400

TC1 0 TC1 1

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-95Instruction Set DescriptionsSWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content
with AND

CMPAND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TCx = TCy & uns(src RELOP dst) Yes 3 1 X

[2] TCx = !TCy & uns(src RELOP dst) Yes 3 1 X

Description These instructions perform a comparison in the D-unit ALU or in the A-unit
ALU. Two accumulator, auxiliary registers, and temporary registers contents
are compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content with OR

� Compare Accumulator, Auxiliary, or Temporary Register Content Maximum

� Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

� Compare Memory with Immediate Value

CMPAND Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Instruction Set Descriptions5-96 SWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

TCx = TCy & uns(src RELOP dst)

[1a] TC1 = TC2 & uns(src RELOP dst) Yes 3 1 X

[1b] TC2 = TC1 & uns(src RELOP dst) Yes 3 1 X

Opcode 0001 001E FSSS cc01 FDDD 0utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ANDed with TCy; TCx is
updated with this operation.

The comparison depends on the optional uns keyword and on M40 for
accumulator comparisons. As the following table shows, the uns keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons.

uns src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy If M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy If M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-97Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC2 = TC1 & AC1 == AC2 The content of AC1(31−0) is compared to the content of AC2(31−0).
The contents are equal (true), TC2 = TC1 & 1.

Before After

AC1 80 0028 0400 AC1 80 0028 0400

AC2 00 0028 0400 AC2 00 0028 0400

M40 0 M40 0

TC1 1 TC1 1

TC2 0 TC2 1

CMPAND Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Instruction Set Descriptions5-98 SWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content with AND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

TCx = !TCy & uns(src RELOP dst)

[2a] TC1 = !TC2 & uns(src RELOP dst) Yes 3 1 X

[2b] TC2 = !TC1 & uns(src RELOP dst) Yes 3 1 X

Opcode 0001 001E FSSS cc01 FDDD 1utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ANDed with the complement
of TCy; TCx is updated with this operation.

The comparison depends on the optional uns keyword and on M40 for
accumulator comparisons. As the following table shows, the uns keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons.

uns src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

 Compare Accumulator, Auxiliary, or Temporary Register Content with AND CMPAND

5-99Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC2 = !TC1 & AC1 == AC2 The content of AC1(31−0) is compared to the content of AC2(31−0).
The contents are equal (true), TC2 = !TC1 & 1.

Before After

AC1 80 0028 0400 AC1 80 0028 0400

AC2 00 0028 0400 AC2 00 0028 0400

M40 0 M40 0

TC1 1 TC1 1

TC2 0 TC2 0

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-100 SWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content
with OR

CMPOR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TCx = TCy | uns(src RELOP dst) Yes 3 1 X

[2] TCx = !TCy | uns(src RELOP dst) Yes 3 1 X

Description These instructions perform a comparison in the D-unit ALU or in the A-unit
ALU. Two accumulator, auxiliary registers, and temporary registers contents
are compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content with AND

� Compare Accumulator, Auxiliary, or Temporary Register Content Maximum

� Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

� Compare Memory with Immediate Value

 Compare Accumulator, Auxiliary, or Temporary Register Content with OR CMPOR

5-101Instruction Set DescriptionsSWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

TCx = TCy | uns(src RELOP dst)

[1a] TC1 = TC2 | uns(src RELOP dst) Yes 3 1 X

[1b] TC2 = TC1 | uns(src RELOP dst) Yes 3 1 X

Opcode 0001 001E FSSS cc10 FDDD 0utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ORed with TCy; TCx is
updated with this operation.

The comparison depends on the optional uns keyword and on M40 for
accumulator comparisons. As the following table shows, the uns keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons.

uns src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-102 SWPU068E

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC2 = TC1 | uns(AC1 != AR1) The unsigned content of AC1(15−0) is compared to the unsigned content
of AR1. The contents are equal (false), TC2 = TC1 | 0.

Before After

AC1 00 8028 0400 AC1 00 8028 0400

AR1 0400 AR1 0400

TC1 1 TC1 1

TC2 0 TC2 1

 Compare Accumulator, Auxiliary, or Temporary Register Content with OR CMPOR

5-103Instruction Set DescriptionsSWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

TCx = !TCy | uns(src RELOP dst)

[2a] TC1 = !TC2 | uns(src RELOP dst) Yes 3 1 X

[2b] TC2 = !TC1 | uns(src RELOP dst) Yes 3 1 X

Opcode 0001 001E FSSS cc10 FDDD 1utt

Operands dst, RELOP, src, TC1, TC2

Description This instruction performs a comparison in the D-unit ALU or in the A-unit ALU.
Two accumulator, auxiliary registers, and temporary registers contents are
compared. When an accumulator ACx is compared with an auxiliary or
temporary register TAx, the 16 lowest bits of ACx are compared with TAx in the
A-unit ALU. If the comparison is true, the TCx status bit is set to 1; otherwise,
it is cleared to 0. The result of the comparison is ORed with the complement
of TCy; TCx is updated with this operation.

The comparison depends on the optional uns keyword and on M40 for
accumulator comparisons. As the following table shows, the uns keyword
specifies an unsigned comparison and M40 defines the comparison bit width
for accumulator comparisons.

uns src dst Comparison Type

no TAx TAy 16-bit signed comparison in A-unit ALU

no TAx ACy 16-bit signed comparison in A-unit ALU

no ACx TAy 16-bit signed comparison in A-unit ALU

no ACx ACy if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx TAy 16-bit unsigned comparison in A-unit ALU

yes TAx ACy 16-bit unsigned comparison in A-unit ALU

yes ACx TAy 16-bit unsigned comparison in A-unit ALU

yes ACx ACy if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

CMPOR Compare Accumulator, Auxiliary, or Temporary Register Content with OR

Instruction Set Descriptions5-104 SWPU068E

Compatibility with C54x devices (C54CM = 1)

Contrary to the corresponding C54x instruction, the C55x register comparison
instruction is performed in execute phase of the pipeline.

When C54CM = 1, the conditions testing the accumulators content are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40, TCy

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC2 = !TC1 | uns(AC1 != AR1) The unsigned content of AC1(15−0) is compared to the unsigned content
of AR1. The contents are equal (false), TC2 = !TC1 | 0.

Before After

AC1 00 8028 0400 AC1 00 8028 0400

AR1 0400 AR1 0400

TC1 1 TC1 1

TC2 1 TC2 0

 Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (max) MAX

5-105Instruction Set DescriptionsSWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum

MAX

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = max(src, dst) Yes 2 1 X

Opcode 0010 111E FSSS FDDD

Operands dst, src

Description This instruction performs a maximum comparison in the D-unit ALU or in the
A-unit ALU. Two accumulator, auxiliary registers, and temporary registers
contents are compared. When an accumulator ACx is compared with an
auxiliary or temporary register TAx, the 16 lowest bits of ACx are compared
with TAx in the A-unit ALU. If the comparison is true, the TCx status bit is set
to 1; otherwise, it is cleared to 0.

� When the destination operand (dst) is an accumulator:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� The operation is performed on 40 bits in the D-unit ALU:

If M40 = 0, src(31–0) content is compared to dst(31–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(31–0) > dst(31–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

If M40 = 1, src(39–0) content is compared to dst(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) > dst(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

� There is no overflow detection, overflow report, and saturation.

MAX Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (max)

Instruction Set Descriptions5-106 SWPU068E

� When the destination operand (dst) is an auxiliary or temporary register:

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� The operation is performed on 16 bits in the A-unit ALU:

The src(15–0) content is compared to the dst(15–0) content. The
extremum value is stored in dst.

step1: if (src(15–0) > dst(15–0))

step2: dst = src

� There is no overflow detection and saturation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. When the destination operand (dst) is an auxiliary or temporary
register, the instruction execution is not impacted by the C54CM status bit.
When the destination operand (dst) is an accumulator, this instruction always
compares the source operand (src) with AC1 as follows:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD

� The operation is performed on 40 bits in the D-unit ALU:

The src(39–0) content is compared to AC1(39–0) content. The extremum
value is stored in dst. If the extremum value is the src content, the CARRY
status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) > AC1(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: { CARRY = 1; dst(39–0) = AC1(39–0) }

There is no overflow detection, overflow report, and saturation.

Status Bits Affected by C54CM, M40, SXMD

Affects CARRY

Repeat This instruction can be repeated.

 Compare Accumulator, Auxiliary, or Temporary Register Content Maximum (max) MAX

5-107Instruction Set DescriptionsSWPU068E

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content with AND

� Compare Accumulator, Auxiliary, or Temporary Register Content with OR

� Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum

� Compare and Select Accumulator Content Maximum

� Compare Memory with Immediate Value

Example 1

Syntax Description

AC1 = max(AC2, AC1) The content of AC2 is less than the content of AC1, the content of AC1 remains
the same and the CARRY status bit is set to 1.

Before After

AC2 00 0000 0000 AC2 00 0000 0000

AC1 00 8500 0000 AC1 00 8500 0000

SXMD 1 SXMD 1

M40 0 M40 0

CARRY 0 CARRY 1

Example 2

Syntax Description

AC1 = max(AR1, AC1) The content of AR1 is less than the content of AC1, the content of AC1 remains
the same and the CARRY status bit is set to 1.

Before After

AR1 8020 AR1 8020

AC1 00 0000 0040 AC1 00 0000 0040

CARRY 0 CARRY 1

Example 3

Syntax Description

T1 = max(AC1, T1) The content of AC1(15–0) is greater than the content of T1, the content of
AC1(15−0) is stored in T1 and the CARRY status bit is cleared to 0.

Before After

AC1 00 0000 8020 AC1 00 0000 8020

T1 8010 T1 8020

CARRY 0 CARRY 0

MIN Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (min)

Instruction Set Descriptions5-108 SWPU068E

Compare Accumulator, Auxiliary, or Temporary Register Content
Minimum

MIN

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = min(src, dst) Yes 2 1 X

Opcode 0011 000E FSSS FDDD

Operands dst, src

Description This instruction performs a minimum comparison in the D-unit ALU or in the
A-unit ALU. Two accumulator, auxiliary registers, and temporary registers
contents are compared. When an accumulator ACx is compared with an
auxiliary or temporary register TAx, the 16 lowest bits of ACx are compared
with TAx in the A-unit ALU. If the comparison is true, the TCx status bit is set
to 1; otherwise, it is cleared to 0.

� When the destination operand (dst) is an accumulator:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD.

� The operation is performed on 40 bits in the D-unit ALU:

If M40 = 0, src(31–0) content is compared to dst(31–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(31–0) < dst(31–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

If M40 = 1, src(39–0) content is compared to dst(39–0) content. The
extremum value is stored in dst. If the extremum value is the src
content, the CARRY status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) < dst(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: CARRY = 1

� There is no overflow detection, overflow report, and saturation.

 Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (min) MIN

5-109Instruction Set DescriptionsSWPU068E

� When the destination operand (dst) is an auxiliary or temporary register:

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� The operation is performed on 16 bits in the A-unit ALU:

The src(15–0) content is compared to the dst(15–0) content. The
extremum value is stored in dst.

step1: if (src(15–0) < dst(15–0))

step2: dst = src

� There is no overflow detection and saturation.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. When the destination operand (dst) is an auxiliary or temporary
register, the instruction execution is not impacted by the C54CM status bit.
When the destination operand (dst) is an accumulator, this instruction always
compares the source operand (src) with AC1 as follows:

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended to 40 bits according to SXMD

� The operation is performed on 40 bits in the D-unit ALU:

The src(39–0) content is compared to AC1(39–0) content. The extremum
value is stored in dst. If the extremum value is the src content, the CARRY
status bit is cleared to 0; otherwise, it is set to 1.

step1: if (src(39–0) < AC1(39–0))

step2: { CARRY = 0; dst(39–0) = src(39–0) }

else

step3: { CARRY = 1; dst(39–0) = AC1(39–0) }

There is no overflow detection, overflow report, and saturation.

Status Bits Affected by C54CM, M40, SXMD

Affects CARRY

Repeat This instruction can be repeated.

MIN Compare Accumulator, Auxiliary, or Temporary Register Content Minimum (min)

Instruction Set Descriptions5-110 SWPU068E

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content with AND

� Compare Accumulator, Auxiliary, or Temporary Register Content with OR

� Compare Accumulator, Auxiliary, or Temporary Register Content
Maximum

� Compare and Select Accumulator Content Minimum

� Compare Memory with Immediate Value

Example

Syntax Description

T1 = min(AC1, T1) The content of AC1(15–0) is greater than the content of T1, the content of T1
remains the same and the CARRY status bit is set to 1.

Before After

AC1 00 8000 0000 AC1 00 8000 0000

T1 8020 T1 8020

CARRY 0 CARRY 1

 Compare and Branch (compare goto) BCC

5-111Instruction Set DescriptionsSWPU068E

Compare and BranchBCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] compare (uns(src RELOP K8)) goto L8 No 4 7/6 X

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0110 1111 FSSS ccxu KKKK KKKK LLLL LLLL

Operands K8, L8, RELOP, src

Description This instruction performs a comparison operation between a source (src)
register content and an 8-bit signed value, K8. The instruction performs a
comparison in the D-unit ALU or in the A-unit ALU. The comparison is
performed in the execute phase of the pipeline. If the result of the comparison
is true, a branch occurs.

The program branch address is specified as an 8-bit signed offset, L8, relative
to the program counter (PC). Use this instruction to branch within a 256-byte
window centered on the current PC value.

The comparison depends on the optional uns keyword and, for accumulator
comparisons, on M40.

� In the case of an unsigned comparison, the 8-bit constant, K8, is zero
extended to:

� 16 bits, if the source (src) operand is an auxiliary or temporary register.

� 40 bits, if the source (src) operand is an accumulator.

� In the case of a signed comparison, the 8-bit constant, K8, is sign
extended to:

� 16 bits, if the source (src) operand is an auxiliary or temporary register.

� 40 bits, if the source (src) operand is an accumulator.

As the following table shows, the uns keyword specifies an unsigned
comparison; M40 defines the comparison bit width of the accumulator.

uns src Comparison Type

no TAx 16-bit signed comparison in A-unit ALU

no ACx if M40 = 0, 32-bit signed comparison in D-unit ALU
if M40 = 1, 40-bit signed comparison in D-unit ALU

yes TAx 16-bit unsigned comparison in A-unit ALU

yes ACx if M40 = 0, 32-bit unsigned comparison in D-unit ALU
if M40 = 1, 40-bit unsigned comparison in D-unit ALU

BCC Compare and Branch (compare goto)

Instruction Set Descriptions5-112 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the conditions testing the accumulator contents are all
performed as if M40 was set to 1.

Status Bits Affected by C54CM, M40

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Branch Conditionally

� Branch Unconditionally

� Branch on Auxiliary Register Not Zero

Example 1

Syntax Description

compare (AC0 >= #12) goto branch The signed content of AC0 is compared to the sign-extended 8-bit
value (12). Because the content of AC0 is greater than or equal to 12,
program control is passed to the program address label defined by
branch (004078h).

compare (AC0 >= #12) goto branch

… … address: 00 4075

… …
branch
:

… … 00 4078

Before After

AC0 00 0000 3000 AC0 00 0000 3000

PC 004071 PC 004078

 Compare and Branch (compare goto) BCC

5-113Instruction Set DescriptionsSWPU068E

Example 2

Syntax Description

compare (T1 != #1) goto branch The content of T1 is not equal to 1, program control is passed to the
next instruction (the branch is not taken).

compare (T1 != #1) goto branch

… … address: 00407D

… …
branch
:

… … 004080

Before After

T1 0000 T1 0000

PC 4079 PC 407D

MAXDIFF Compare and Select Accumulator Content Maximum (max_diff)

Instruction Set Descriptions5-114 SWPU068E

Compare and Select Accumulator Content MaximumMAXDIFF

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] max_diff(ACx, ACy, ACz, ACw) Yes 3 1 X

[2] max_diff_dbl(ACx, ACy, ACz, ACw, TRNx) Yes 3 1 X

Description Instruction [1] performs two paralleled 16-bit extremum selections in the D-unit
ALU. Instruction [2] performs a single 40-bit extremum selection in the D-unit
ALU.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content Maximum

� Compare and Select Accumulator Content Minimum

 Compare and Select Accumulator Content Maximum (max_diff) MAXDIFF

5-115Instruction Set DescriptionsSWPU068E

Compare and Select Accumulator Content Maximum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] max_diff(ACx, ACy, ACz, ACw) Yes 3 1 X

Opcode 0001 000E DDSS 1100 SSDD nnnn

Operands ACw, ACx, ACy, ACz

Description This instruction performs two paralleled 16-bit extremum selections in the
D-unit ALU in one cycle. This instruction performs a dual maximum search.

The two operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulators are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

For each datapath (high and low):

� ACx and ACy are the source accumulators.

� The differences are stored in accumulator ACw.

� The subtraction computation is equivalent to the dual 16-bit subtractions
instruction.

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVw) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh (positive) and 8000h (negative).

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh (positive) and FF 8000h (negative).

MAXDIFF Compare and Select Accumulator Content Maximum (max_diff)

Instruction Set Descriptions5-116 SWPU068E

� The extremum is stored in accumulator ACz.

� The extremum is searched considering the selected bit width of the
accumulators:

� for the lower 16-bit data path, the sign bit is extracted at bit position 15

� for the higher 24-bit data path, the sign bit is extracted at bit position 31

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs:

� TRN0 tracks the decision for the high part data path

� TRN1 tracks the decision for the low part data path

If the extremum value is the ACx high or low part, the decision bit is
cleared to 0; otherwise, it is set to 1:

TRN0 = TRN0 >> #1

TRN1 = TRN1 >> #1

ACw(39–16) = ACy(39–16) – ACx(39–16)

ACw(15–0) = ACy(15–0) – ACx(15–0)

If (ACx(31–16) > ACy(31–16))

{ bit(TRN0, 15) = #0 ; ACz(39–16) = ACx(39–16) }

else

{ bit(TRN0, 15) = #1 ; ACz(39–16) = ACy(39–16) }

if (ACx(15–0) > ACy(15–0))

{ bit(TRN1, 15) = #0 ; ACz(15–0) = ACx(15–0) }

else

{ bit(TRN1, 15) = #1 ; ACz(15–0) = ACy(15–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit data path (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

 Compare and Select Accumulator Content Maximum (max_diff) MAXDIFF

5-117Instruction Set DescriptionsSWPU068E

Example

Syntax Description

max_diff(AC0, AC1, AC2, AC1) The difference is stored in AC1. The content of AC0(39–16) is subtracted
from the content of AC1(39–16) and the result is stored in AC1(39–16).
Since SATD = 1 and an overflow is detected, AC1(39−16) = FF 8000h
(saturation). The content of AC0(15–0) is subtracted from the content of
AC1(15–0) and the result is stored in AC1(15–0). The maximum is stored
in AC2. The content of TRN0 and TRN1 is shifted right 1 bit. AC0(31–16)
is greater than AC1(31–16), AC0(39–16) is stored in AC2(39–16) and
TRN0(15) is cleared to 0. AC0(15–0) is greater than AC1(15–0),
AC0(15–0) is stored in AC2(15–0) and TRN1(15) is cleared to 0.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 90 0000 0000 AC1 FF 8000 DDDE

AC2 00 0000 0000 AC2 10 2400 2222

SATD 1 SATD 1

TRN0 1000 TRN0 0800

TRN1 0100 TRN1 0080

ACOV1 0 ACOV1 1

CARRY 1 CARRY 0

MAXDIFF Compare and Select Accumulator Content Maximum (max_diff_dbl)

Instruction Set Descriptions5-118 SWPU068E

Compare and Select Accumulator Content Maximum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] max_diff_dbl(ACx, ACy, ACz, ACw, TRN0) Yes 3 1 X

[2b] max_diff_dbl(ACx, ACy, ACz, ACw, TRN1) Yes 3 1 X

Opcode TRN0 0001 000E DDSS 1101 SSDD xxx0

TRN1 0001 000E DDSS 1101 SSDD xxx1

Operands ACw, ACx, ACy, ACz, TRNx

Description This instruction performs a single 40-bit extremum selection in the D-unit ALU.
This instruction performs a maximum search.

� ACx and ACy are the two source accumulators.

� The difference between the source accumulators is stored in accumulator
ACw.

� The subtraction computation is equivalent to the subtraction instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� The extremum between the source accumulators is stored in accumulator
ACz.

� The extremum computation is similar to the compare register content
maximum instruction. However, the CARRY status bit is not updated by
the extremum search but by the subtraction instruction.

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs. If the extremum value is ACx, the decision bit is
cleared to 0; otherwise, it is set to 1.

 Compare and Select Accumulator Content Maximum (max_diff_dbl) MAXDIFF

5-119Instruction Set DescriptionsSWPU068E

If M40 = 0:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

If (ACx(31–0) > ACy(31–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

If M40 = 1:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

If (ACx(39–0) > ACy(39–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. However to ensure compatibility versus overflow detection and
saturation of the destination accumulator, this instruction must be executed
with M40 = 0.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

max_diff_dbl(AC0, AC1, AC2, AC3, TRN1) The difference is stored in AC3. The content of AC0 is
subtracted from the content of AC1 and the result is stored in
AC3. The maximum is stored in AC2. The content of TRN1 is
shifted right 1 bit. AC0 is greater than AC1, AC0 is stored in
AC2 and TRN1(15) is cleared to 0.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 00 8000 DDDE AC1 00 8000 DDDE

AC2 00 0000 0000 AC2 10 2400 2222

AC3 00 0000 0000 AC3 F0 5C00 BBBC

M40 1 M40 1

SATD 1 SATD 1

TRN1 0080 TRN1 0040

ACOV3 0 ACOV3 0

CARRY 0 CARRY 0

MINDIFF Compare and Select Accumulator Content Minimum (min_diff)

Instruction Set Descriptions5-120 SWPU068E

Compare and Select Accumulator Content MinimumMINDIFF

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] min_diff(ACx, ACy, ACz, ACw) Yes 3 1 X

[2] min_diff_dbl(ACx, ACy, ACz, ACw, TRNx) Yes 3 1 X

Description Instruction [1] performs two paralleled 16-bit extremum selections in the D-unit
ALU. Instruction [2] performs a single 40-bit extremum selection in the D-unit
ALU.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

� Compare Accumulator, Auxiliary, or Temporary Register Content Minimum

� Compare and Select Accumulator Content Maximum

 Compare and Select Accumulator Content Minimum (min_diff) MINDIFF

5-121Instruction Set DescriptionsSWPU068E

Compare and Select Accumulator Content Minimum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] min_diff(ACx, ACy, ACz, ACw) Yes 3 1 X

Opcode 0001 000E DDSS 1110 SSDD xxxx

Operands ACw, ACx, ACy, ACz

Description This instruction performs two paralleled 16-bit extremum selections in the
D-unit ALU in one cycle. This instruction performs a dual minimum search.

The two operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulators are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

For each datapath (high and low):

� ACx and ACy are the source accumulators.

� The differences are stored in accumulator ACw.

� The subtraction computation is equivalent to the dual 16-bit subtractions
instruction.

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVw) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh (positive) and 8000h (negative).

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh (positive) and FF 8000h (negative).

MINDIFF Compare and Select Accumulator Content Minimum (min_diff)

Instruction Set Descriptions5-122 SWPU068E

� The extremum is stored in accumulator ACz.

� The extremum is searched considering the selected bit width of the
accumulators:

� for the lower 16-bit data path, the sign bit is extracted at bit position 15

� for the higher 24-bit data path, the sign bit is extracted at bit position 31

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs:

� TRN0 tracks the decision for the high part data path

� TRN1 tracks the decision for the low part data path

If the extremum value is the ACx high or low part, the decision bit is
cleared to 0; otherwise, it is set to 1:

TRN0 = TRN0 >> #1

TRN1 = TRN1 >> #1

ACw(39–16) = ACy(39–16) – ACx(39–16)

ACw(15–0) = ACy(15–0) – ACx(15–0)

If (ACx(31–16) < ACy(31–16))

{ bit(TRN0, 15) = #0 ; ACz(39–16) = ACx(39–16) }

else

{ bit(TRN0, 15) = #1 ; ACz(39–16) = ACy(39–16) }

if (ACx(15–0) < ACy(15–0))

{ bit(TRN1, 15) = #0 ; ACz(15–0) = ACx(15–0) }

else

{ bit(TRN1, 15) = #1 ; ACz(15–0) = ACy(15–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit data path (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

 Compare and Select Accumulator Content Minimum (min_diff) MINDIFF

5-123Instruction Set DescriptionsSWPU068E

Example

Syntax Description

min_diff(AC0, AC1, AC2, AC1) The difference is stored in AC1. The content of AC0(39–16) is subtracted
from the content of AC1(39–16) and the result is stored in AC1(39–16).
Since SATD = 1 and an overflow is detected, AC1(39−16) = FF 8000h
(saturation). The content of AC0(15–0) is subtracted from the content of
AC1(15–0) and the result is stored in AC1(15–0). The minimum is stored
in AC2 (sign bit extracted at bits 31 and 15). The content of TRN0 and
TRN1 is shifted right 1 bit. AC0(31–16) is greater than or equal to
AC1(31–16), AC1(39–16) is stored in AC2(39–16) and TRN0(15) is set
to 1. AC0(15–0) is greater than or equal to AC1(15–0), AC1(15–0) is
stored in AC2(15–0) and TRN1(15) is set to 1.

Before After

AC0 10 2400 2222 AC0 10 2400 2222

AC1 00 8000 DDDE AC1 FF 8000 BBBC

AC2 10 2400 2222 AC2 00 8000 DDDE

SATD 1 SATD 1

TRN0 0800 TRN0 8400

TRN1 0040 TRN1 8020

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

MINDIFF Compare and Select Accumulator Content Minimum (min_diff_dbl)

Instruction Set Descriptions5-124 SWPU068E

Compare and Select Accumulator Content Minimum

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] min_diff_dbl(ACx, ACy, ACz, ACw, TRN0) Yes 3 1 X

[2b] min_diff_dbl(ACx, ACy, ACz, ACw, TRN1) Yes 3 1 X

Opcode TRN0 0001 000E DDSS 1111 SSDD xxx0

TRN1 0001 000E DDSS 1111 SSDD xxx1

Operands ACw, ACx, ACy, ACz, TRNx

Description This instruction performs a single 40-bit extremum selection in the D-unit ALU.
This instruction performs a minimum search.

� ACx and ACy are the two source accumulators.

� The difference between the source accumulators is stored in accumulator
ACw.

� The subtraction computation is equivalent to the subtraction instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� The extremum between the source accumulators is stored in accumulator
ACz.

� The extremum computation is similar to the compare register content
maximum instruction. However, the CARRY status bit is not updated by
the extremum search but by the subtraction instruction.

� According to the extremum found, a decision bit is shifted in TRNx from
the MSBs to the LSBs. If the extremum value is ACx, the decision bit is
cleared to 0; otherwise, it is set to 1.

 Compare and Select Accumulator Content Minimum (min_diff_dbl) MINDIFF

5-125Instruction Set DescriptionsSWPU068E

If M40 = 0:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

If (ACx(31–0) < ACy(31–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

If M40 = 1:

TRNx = TRNx >> #1

ACw(39–0) = ACy(39–0) – ACx(39–0)

If (ACx(39–0) < ACy(39–0))

{ bit(TRNx, 15) = #0 ; ACz(39–0) = ACx(39–0) }

else

{ bit(TRNx, 15) = #1 ; ACz(39–0) = ACy(39–0) }

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if M40 status bit was locally
set to 1. However to ensure compatibility versus overflow detection and
saturation of the destination accumulator, this instruction must be executed
with M40 = 0.

Status Bits Affected by C54CM, M40, SATD

Affects ACOVw, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

min_diff_dbl(AC0, AC1, AC2, AC3, TRN0) The difference is stored in AC3. The content of AC0 is
subtracted from the content of AC1 and the result is stored in
AC3. The minimum is stored in AC2. The content of TRN0 is
shifted right 1 bit. If AC0 is less than AC1, AC0 is stored in AC2
and TRN0(15) is cleared to 0; otherwise, AC1 is stored in AC2
and TRN0(15) is set to 1.

CMP Compare Memory with Immediate Value

Instruction Set Descriptions5-126 SWPU068E

Compare Memory with Immediate ValueCMP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = (Smem == K16) No 4 1 X

[2] TC2 = (Smem == K16) No 4 1 X

Opcode TC1 1111 0000 AAAA AAAI KKKK KKKK KKKK KKKK

TC2 1111 0001 AAAA AAAI KKKK KKKK KKKK KKKK

Operands K16, Smem, TCx

Description This instruction performs a comparison in the A-unit ALU. The data memory
operand Smem is compared to the 16-bit signed constant, K16. If they are
equal, the TCx status bit is set to 1; otherwise, it is cleared to 0.

if((Smem) == K16)

TCx = 1

else

TCx = 0

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Compare Accumulator, Auxiliary, or Temporary Register Content

Example 1

Syntax Description

TC1 = (*AR1+ == #400h) The content addressed by AR1 is compared to the signed 16-bit value
(400h). Because they are equal, TC1 is set to 1. AR1 is incremented by 1.

Before After

AR1 0285 AR1 0286

0285 0400 0285 0400

TC1 0 TC1 1

 Compare Memory with Immediate Value CMP

5-127Instruction Set DescriptionsSWPU068E

Example 2

Syntax Description

TC2 = (*AR1 == #400h) The content addressed by AR1 is compared to the signed 16-bit value
(400h). Because they are not equal, TC2 is cleared to 0.

Before After

AR1 0285 AR1 0285

0285 0000 0285 0000

TC2 0 TC2 0

BNOT Complement Accumulator, Auxiliary, or Temporary Register Bit (cbit)

Instruction Set Descriptions5-128 SWPU068E

Complement Accumulator, Auxiliary, or Temporary Register BitBNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] cbit(src, Baddr) No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 011x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction complements a single bit, as defined by the bit addressing
mode, Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Content

� Complement Memory Bit

� Set Accumulator, Auxiliary, or Temporary Register Bit

Example

Syntax Description

cbit(T0, AR1) The bit at the position defined by the content of AR1(3−0) in T0 is complemented.

Before After

T0 E000 T0 F000

AR1 000C AR1 000C

 Complement Accumulator, Auxiliary, or Temporary Register Content NOT

5-129Instruction Set DescriptionsSWPU068E

Complement Accumulator, Auxiliary, or Temporary Register ContentNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = ~src Yes 2 1 X

Opcode 0011 011E FSSS FDDD

Operands dst, src

Description This instruction computes the 1s complement (bitwise complement) of the
content of the source register (src).

� When the destination (dst) operand is an accumulator:

� The bit inversion is performed on 40 bits in the D-unit ALU and the
result is stored in the destination accumulator.

� If an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the auxiliary or temporary register are zero
extended.

� When the destination (dst) operand is an auxiliary or temporary register:

� The bit inversion is performed on 16 bits in the A-unit ALU and the
result is stored in the destination auxiliary or temporary register.

� If an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Negate Accumulator, Auxiliary, or Temporary Register Content

Example

Syntax Description

AC1 = ~AC0 The content of AC0 is complemented and the result is stored in AC1.

Before After

AC0 7E 2355 4FC0 AC0 7E 2355 4FC0

AC1 00 2300 5678 AC1 81 DCAA B03F

BNOT Complement Memory Bit (cbit)

Instruction Set Descriptions5-130 SWPU068E

Complement Memory BitBNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] cbit(Smem, src) No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 111x

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
complements a single bit, as defined by the content of the source (src)
operand, of a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Content

� Set Memory Bit

Example

Syntax Description

cbit(*AR3, AC0) The bit at the position defined by AC0(3–0) in the content addressed by AR3 is
complemented.

 Compute Exponent of Accumulator Content (exp) EXP

5-131Instruction Set DescriptionsSWPU068E

Compute Exponent of Accumulator ContentEXP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Tx = exp(ACx) Yes 3 1 X

Opcode 0001 000E xxSS 1000 xxdd xxxx

Operands ACx, Tx

Description This instruction computes the exponent of the source accumulator ACx in the
D-unit shifter. The result of the operation is stored in the temporary register Tx.
The A-unit ALU is used to make the move operation.

This exponent is a signed 2s-complement value in the –8 to 31 range. The
exponent is computed by calculating the number of leading bits in ACx and
subtracting 8 from this value. The number of leading bits is the number of shifts
to the MSBs needed to align the accumulator content on a signed 40-bit
representation.

ACx is not modified after the execution of this instruction. If ACx is equal to 0,
Tx is loaded with 0.

This instruction produces in Tx the opposite result than computed by the
Compute Mantissa and Exponent of Accumulator Content instruction (page 5-132).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Compute Mantissa and Exponent of Accumulator Content

Example

Syntax Description

T1 = exp(AC0) The exponent is computed by subtracting 8 from the number of leading bits in the
content of AC0. The exponent value is a signed 2s-complement value in the –8 to
31 range and is stored in T1.

Before After

AC0 FF FFFF FFCB AC0 FF FFFF FFCB

T1 0000 T1 0019

MANT::NEXP Compute Mantissa and Exponent of Accumulator Content (mant, exp)

Instruction Set Descriptions5-132 SWPU068E

Compute Mantissa and Exponent of Accumulator ContentMANT::NEXP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = mant(ACx), Tx = −exp(ACx) Yes 3 1 X2

Opcode 0001 000E DDSS 1001 xxdd xxxx

Operands ACx, ACy, Tx

Description This instruction computes the exponent and mantissa of the source
accumulator ACx. The computation of the exponent and the mantissa is
executed in the D-unit shifter. The exponent is computed and stored in the
temporary register Tx. The A-unit is used to make the move operation. The
mantissa is stored in the accumulator ACy.

The exponent is a signed 2s-complement value in the –31 to 8 range. The
exponent is computed by calculating the number of leading bits in ACx and
subtracting this value from 8. The number of leading bits is the number of shifts
to the MSBs needed to align the accumulator content on a signed 40-bit
representation.

The mantissa is obtained by aligning the ACx content on a signed 32-bit
representation. The mantissa is computed and stored in ACy.

� The shift operation is performed on 40 bits.

� When shifting to the LSBs, bit 39 of ACx is extended to bit 31.

� When shifting to the MSBs, 0 is inserted at bit position 0.

� If ACx is equal to 0, Tx is loaded with 8000h.

This instruction produces in Tx the opposite result than computed by the
Compute Exponent of Accumulator Content instruction (page 5-131).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Compute Exponent of Accumulator Content

 Compute Mantissa and Exponent of Accumulator Content (mant, exp) MANT::NEXP

5-133Instruction Set DescriptionsSWPU068E

Example 1

Syntax Description

AC1 = mant(AC0), T1 = −exp(AC0) The exponent is computed by subtracting the number of leading bits in
the content of AC0 from 8. The exponent value is a signed 2s-comple-
ment value in the –31 to 8 range and is stored in T1. The mantissa is
computed by aligning the content of AC0 on a signed 32-bit representa-
tion. The mantissa value is stored in AC1.

Before After

AC0 21 0A0A 0A0A AC0 21 0A0A 0A0A

AC1 FF FFFF F001 AC1 00 4214 1414

T1 0000 T1 0007

Example 2

Syntax Description

AC1 = mant(AC0), T1 = −exp(AC0) The exponent is computed by subtracting the number of leading bits in
the content of AC0 from 8. The exponent value is a signed 2s-comple-
ment value in the –31 to 8 range and is stored in T1. The mantissa is
computed by aligning the content of AC0 on a signed 32-bit representa-
tion. The mantissa value is stored in AC1.

Before After

AC0 00 E804 0000 AC0 00 E804 0000

AC1 FF FFFF F001 AC1 00 7402 0000

T1 0000 T1 0001

BCNT Count Accumulator Bits (count)

Instruction Set Descriptions5-134 SWPU068E

Count Accumulator BitsBCNT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Tx = count(ACx, ACy, TC1) Yes 3 1 X

[2] Tx = count(ACx, ACy, TC2) Yes 3 1 X

Opcode TC1 0001 000E xxSS 1010 SSdd xxx0

TC2 0001 000E XXSS 1010 SSdd xxx1

Operands ACx, ACy, Tx, TCx

Description This instruction performs bit field manipulation in the D-unit shifter. The result
is stored in the selected temporary register (Tx). The A-unit ALU is used to
make the move operation.

Accumulator ACx is ANDed with accumulator ACy. The number of bits set to
1 in the intermediary result is evaluated and stored in the selected temporary
register (Tx). If the number of bits is even, the selected TCx status bit is cleared
to 0. If the number of bits is odd, the selected TCx status bit is set to 1.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

T1 = count(AC1, AC2, TC1) The content of AC1 is ANDed with the content of AC2, the number of bits
set to 1 in the result is evaluated and stored in T1. The number of bits set
to 1 is odd, TC1 is set to 1.

Before After

AC1 7E 2355 4FC0 AC1 7E 2355 4FC0

AC2 0F E340 5678 AC2 0F E340 5678

T1 0000 T1 000B

TC1 0 TC1 1

 Dual 16−Bit Additions ADD

5-135Instruction Set DescriptionsSWPU068E

Dual 16-Bit AdditionsADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

No 3 1 X

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

No 3 1 X

Description These instructions perform two paralleled addition operations in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Addition

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition with Parallel Store Accumulator Content to Memory

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtraction and Addition

ADD Dual 16−Bit Additions

Instruction Set Descriptions5-136 SWPU068E

Dual 16-Bit Additions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 000x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled addition operations in one cycle. The
operations are executed on 40 bits in the D-unit ALU that is configured locally
in dual 16-bit mode. The 16 lower bits of both the ALU and the accumulator
are separated from their higher 24 bits (the 8 guard bits are attached to the
higher 16-bit datapath).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

 Dual 16−Bit Additions ADD

5-137Instruction Set DescriptionsSWPU068E

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C16, C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) + HI(AC1),
LO(AC0) = LO(*AR3) + LO(AC1)

Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of AC1(39–16) is added to the content
addressed by AR3 and the result is stored in AC0(39–16). The content
of AC1(15–0) is added to the content addressed by AR3 + 1 and the
result is stored in AC0(15–0).

ADD Dual 16−Bit Additions

Instruction Set Descriptions5-138 SWPU068E

Dual 16-Bit Additions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 100x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled addition operations in one cycle. The
operations are executed on 40 bits in the D-unit ALU that is configured locally
in dual 16-bit mode. The 16 lower bits of both the ALU and the accumulator
are separated from their higher 24 bits (the 8 guard bits are attached to the
higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

 Dual 16−Bit Additions ADD

5-139Instruction Set DescriptionsSWPU068E

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) + T0,
LO(AC0) = LO(*AR3) + T0

Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of T0 is added to the content addressed
by AR3 and the result is stored in AC0(39–16). The duplicated content of
T0 is added to the content addressed by AR3 + 1 and the result is stored
in AC0(15–0).

ADDSUB Dual 16−Bit Addition and Subtraction

Instruction Set Descriptions5-140 SWPU068E

Dual 16-Bit Addition and SubtractionADDSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACx) = Smem + Tx,
LO(ACx) = Smem – Tx

No 3 1 X

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) – Tx

No 3 1 X

Description These instructions perform two paralleled addition and subtraction operations
in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Addition

� Dual 16-Bit Additions

� Dual 16-Bit Subtractions

� Dual 16-Bit Subtraction and Addition

� Subtraction

 Dual 16−Bit Addition and Subtraction ADDSUB

5-141Instruction Set DescriptionsSWPU068E

Dual 16-Bit Addition and Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACx) = Smem + Tx,
LO(ACx) = Smem – Tx

No 3 1 X

Opcode 1101 1110 AAAA AAAI ssDD 1000

Operands ACx, Smem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle:
an addition and subtraction. The operations are executed on 40 bits in the
D-unit ALU that is configured locally in dual 16-bit mode. The 16 lower bits of
both the ALU and the accumulator are separated from their higher 24 bits (the
8 guard bits are attached to the higher 16-bit datapath).

� The data memory operand Smem:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

ADDSUB Dual 16−Bit Addition and Subtraction

Instruction Set Descriptions5-142 SWPU068E

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC1) = *AR1 + T1,
LO(AC1) = *AR1 – T1

Both instructions are performed in parallel. The content addressed by AR1 is added
to the content of T1 and the result is stored in AC1(39–16). The duplicated content
of T1 is subtracted from the duplicated content addressed by AR1 and the result is
stored in AC1(15–0).

Before After

AC1 00 2300 0000 AC1 00 2300 A300

T1 4000 T1 4000

AR1 0201 AR1 0201

201 E300 201 E300

SXMD 1 SXMD 1

M40 1 M40 1

ACOV0 0 ACOV0 0

CARRY 0 CARRY 1

 Dual 16−Bit Addition and Subtraction ADDSUB

5-143Instruction Set DescriptionsSWPU068E

Dual 16-Bit Addition and Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) – Tx

No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 110x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle:
an addition and subtraction. The operations are executed on 40 bits in the
D-unit ALU that is configured locally in dual 16-bit mode. The 16 lower bits of
both the ALU and the accumulator are separated from their higher 24 bits (the
8 guard bits are attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

ADDSUB Dual 16−Bit Addition and Subtraction

Instruction Set Descriptions5-144 SWPU068E

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C16, C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) + T0,
LO(AC0) = LO(*AR3) – T0

Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content of T0 is added to the content addressed by AR3 and
the result is stored in AC0(39–16). The duplicated content of T0 is subtracted from
the content addressed by AR3 + 1 and the result is stored in AC0(15–0).

 Dual 16−Bit Subtractions SUB

5-145Instruction Set DescriptionsSWPU068E

Dual 16-Bit SubtractionsSUB

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[1] HI(ACy) = HI(ACx) – HI(Lmem),
LO(ACy) = LO(ACx) – LO(Lmem)

No 3 1 X

[2] HI(ACy) = HI(Lmem) – HI(ACx),
LO(ACy) = LO(Lmem) – LO(ACx)

No 3 1 X

[3] HI(ACx) = Tx – HI(Lmem),
LO(ACx) = Tx – LO(Lmem)

No 3 1 X

[4] HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) – Tx

No 3 1 X

Description These instructions perform two paralleled subtraction operations in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtraction and Addition

� Subtract Conditionally

� Subtraction

� Subtraction with Parallel Store Accumulator Content to Memory

SUB Dual 16−Bit Subtractions

Instruction Set Descriptions5-146 SWPU068E

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACy) = HI(ACx) – HI(Lmem),
LO(ACy) = LO(ACx) – LO(Lmem)

No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 001x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle.
The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit data path).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

 Dual 16−Bit Subtractions SUB

5-147Instruction Set DescriptionsSWPU068E

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C16, C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(AC1) – HI(*AR3),
LO(AC0) = LO(AC1) – LO(*AR3)

Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content addressed by AR3 (sign extended to
24 bits) is subtracted from the content of AC1(39–16) and the result is
stored in AC0(39–16). The content addressed by AR3 + 1 is subtracted
from the content of AC1(15–0) and the result is stored in AC0(15–0).

SUB Dual 16−Bit Subtractions

Instruction Set Descriptions5-148 SWPU068E

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[2] HI(ACy) = HI(Lmem) – HI(ACx),
LO(ACy) = LO(Lmem) – LO(ACx)

No 3 1 X

Opcode 1110 1110 AAAA AAAI SSDD 010x

Operands ACx, ACy, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle.
The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVy) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

 Dual 16−Bit Subtractions SUB

5-149Instruction Set DescriptionsSWPU068E

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C 16, C54CM, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) – HI(AC1),
LO(AC0) = LO(*AR3) – LO(AC1)

Both instructions are performed in parallel. When the Lmem address is
even (AR3 = even): The content of AC1(39–16) is subtracted from the
content addressed by AR3 and the result is stored in AC0(39–16). The
content of AC1(15–0) is subtracted from the content addressed by
AR3 + 1 and the result is stored in AC0(15–0).

SUB Dual 16−Bit Subtractions

Instruction Set Descriptions5-150 SWPU068E

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[3] HI(ACx) = Tx – HI(Lmem),
LO(ACx) = Tx – LO(Lmem)

No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 011x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled subtraction operations in one cycle.
The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

 Dual 16−Bit Subtractions SUB

5-151Instruction Set DescriptionsSWPU068E

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = T0 – HI(*AR3),
LO(AC0) = T0 – LO(*AR3)

Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content addressed by AR3 is subtracted from the
content of T0 and the result is stored in AC0(39–16). The content addressed
by AR3 + 1 is subtracted from the duplicated content of T0 and the result
is stored in AC0(15–0).

SUB Dual 16−Bit Subtractions

Instruction Set Descriptions5-152 SWPU068E

Dual 16-Bit Subtractions

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[4] HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) – Tx

No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 101x

Operands ACx, Tx, Lmem

Description This instruction performs two paralleled subtraction operations in one cycle.
The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

 Dual 16−Bit Subtractions SUB

5-153Instruction Set DescriptionsSWPU068E

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C16, C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) – T0,
LO(AC0) = LO(*AR3) – T0

Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content of T0 is subtracted from the content addressed
by AR3 and the result is stored in AC0(39–16). The duplicated content of
T0 is subtracted from the content addressed by AR3 + 1 and the result is
stored in AC0(15–0).

SUBADD Dual 16−Bit Subtraction and Addition

Instruction Set Descriptions5-154 SWPU068E

Dual 16-Bit Subtraction and AdditionSUBADD

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[1] HI(ACx) = Smem – Tx,
LO(ACx) = Smem + Tx

No 3 1 X

[2] HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) + Tx

No 3 1 X

Description These instructions perform two paralleled subtraction and addition operations
in one cycle.

The operations are executed on 40 bits in the D-unit ALU that is configured
locally in dual 16-bit mode. The 16 lower bits of both the ALU and the
accumulator are separated from their higher 24 bits (the 8 guard bits are
attached to the higher 16-bit datapath).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Addition

� Dual 16-Bit Additions

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtractions

� Subtraction

 Dual 16−Bit Subtraction and Addition SUBADD

5-155Instruction Set DescriptionsSWPU068E

Dual 16-Bit Subtraction and Addition

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[1] HI(ACx) = Smem – Tx,
LO(ACx) = Smem + Tx

No 3 1 X

Opcode 1101 1110 AAAA AAAI ssDD 1001

Operands ACx, Smem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle:
a subtraction and addition. The operations are executed on 40 bits in the
D-unit ALU that is configured locally in dual 16-bit mode. The 16 lower bits of
both the ALU and the accumulator are separated from their higher 24 bits (the
8 guard bits are attached to the higher 16-bit datapath).

� The data memory operand Smem:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

SUBADD Dual 16−Bit Subtraction and Addition

Instruction Set Descriptions5-156 SWPU068E

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

Status Bits Affected by C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = *AR3 – T0,
LO(AC0) = *AR3 + T0

Both instructions are performed in parallel. The content of T0 is subtracted from the
content addressed by AR3 and the result is stored in AC0(39–16). The duplicated
content of T0 is added to the duplicated content addressed by AR3 and the result is
stored in AC0(15–0).

 Dual 16−Bit Subtraction and Addition SUBADD

5-157Instruction Set DescriptionsSWPU068E

Dual 16-Bit Subtraction and Addition

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[2] HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) + Tx

No 3 1 X

Opcode 1110 1110 AAAA AAAI ssDD 111x

Operands ACx, Lmem, Tx

Description This instruction performs two paralleled arithmetical operations in one cycle:
a subtraction and addition. The operations are executed on 40 bits in the
D-unit ALU that is configured locally in dual 16-bit mode. The 16 lower bits of
both the ALU and the accumulator are separated from their higher 24 bits (the
8 guard bits are attached to the higher 16-bit datapath).

� The temporary register Tx:

� is used as one of the 16-bit operands of the ALU low part

� is duplicated and, according to SXMD, sign extended to 24 bits to be
used in the ALU high part

� The data memory operand dbl(Lmem) is divided into two 16-bit parts:

� the lower part is used as one of the 16-bit operands of the ALU low part

� the higher part is sign extended to 24 bits according to SXMD and is
used in the ALU high part

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� For each of the two computations performed in the ALU, an overflow
detection is made. If an overflow is detected on any of the data paths, the
destination accumulator overflow status bit (ACOVx) is set.

� For the operations performed in the ALU low part, overflow is detected
at bit position 15.

� For the operations performed in the ALU high part, overflow is
detected at bit position 31.

SUBADD Dual 16−Bit Subtraction and Addition

Instruction Set Descriptions5-158 SWPU068E

� For all instructions, the carry of the operation performed in the ALU high
part is reported in the CARRY status bit. The CARRY status bit is always
extracted at bit position 31.

� Independently on each data path, if SATD = 1 when an overflow is
detected on the data path, a saturation is performed:

� For the operations performed in the ALU low part, saturation values
are 7FFFh and 8000h.

� For the operations performed in the ALU high part, saturation values
are 00 7FFFh and FF 8000h.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, this instruction is executed as if SATD is locally cleared to
0. Overflow is only detected and reported for the computation performed in the
higher 24-bit datapath (overflow is detected at bit position 31).

� When C54CM = 1 and C16 = 1, the instruction behaves like a dual 16-bit
instruction and the carry is not propagated at bit 15 in the D-unit ALU.

� When C54CM = 1 and C16 = 0, the instruction behaves like a single
arithmetic instruction and the carry is propagated at bit 15 in the D-unit
ALU.

Status Bits Affected by C16, C54CM, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

HI(AC0) = HI(*AR3) – T0,
LO(AC0) = LO(*AR3) + T0

Both instructions are performed in parallel. When the Lmem address is even
(AR3 = even): The content of T0 is subtracted from the content addressed
by AR3 and the result is stored in AC0(39–16). The duplicated content of
T0 is added to the content addressed by AR3 + 1 and the result is stored
in AC0(15–0).

 Execute Conditionally (if execute) XCC

5-159Instruction Set DescriptionsSWPU068E

Execute ConditionallyXCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] if (cond) execute(AD_Unit) No 2 1 AD

[2] if (cond) execute(D_Unit) No 2 1 X

Description These instructions evaluate a single condition defined by the cond field and
allow you to control execution of all operations implied by the instruction or part
of the instruction. See Table 1−3 for a list of conditions.

Instruction [1] allows you to control the entire execution flow from the address
phase to the execute phase of the pipeline. Instruction [2] allows you to only
control the execution flow from the execute phase of the pipeline. The use of
a label, where control of the execute conditionally instruction ends, is optional.

� These instructions may be executed alone.

� These instructions may be executed with two paralleled instructions.

� These instructions may be executed with the instruction with which it is
paralleled.

� These instructions may be executed with the previous instruction.

� These instructions may be executed with the previous instruction and two
paralleled instructions.

� These instructions cannot be repeated.

� These instructions cannot be used as the last instruction in a repeat loop
structure.

� These instructions cannot control the execution of the following program
control instructions:

goto (cond) goto intr blockrepeat return_int

call (cond) call idle (cond) execute(AD_unit)

return (cond) return reset (cond) execute(D_unit)

trap localrepeat repeat while (cond) repeat

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

XCC Execute Conditionally (if execute)

Instruction Set Descriptions5-160 SWPU068E

Execute Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] if (cond) execute(AD_Unit) No 2 1 AD

Opcode 1001 0110 0CCC CCCC

1001 1110 0CCC CCCC

1001 1111 0CCC CCCC

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands cond

Description This instruction evaluates a single condition defined by the cond field and
allows you to control the execution flow of an instruction, or instructions, from
the address phase to the execute phase of the pipeline. See Table 1−3 for a
list of conditions.

When this instruction moves into the address phase of the pipeline, the
condition specified in the cond field is evaluated. If the tested condition is true,
the conditional instruction(s) is read and executed; if the tested condition is
false, the conditional instruction(s) is not read and program control is passed
to the instruction following the conditional instruction(s) or to the program
address defined by label. There is a 3-cycle latency for the condition testing.

� This instruction may be executed alone:

if(cond) execute(AD_unit)
instruction_executes_conditionally

label:

� This instruction may be executed with two paralleled instructions:

if(cond) execute(AD_unit)
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

label:

� This instruction may be executed with the instruction with which it is
paralleled:

if(cond) execute(AD_unit)
|| instruction_executes_conditionally

label:

 Execute Conditionally (if execute) XCC

5-161Instruction Set DescriptionsSWPU068E

� This instruction may be executed with a previous instruction:

previous_instruction
|| if(cond) execute(AD_unit)
instruction_executes_conditionally

label:

� This instruction may be executed with a previous instruction and two
paralleled instructions:

previous_instruction
|| if(cond) execute(AD_unit)
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

label:

This instruction cannot be used as the last instruction in a repeat loop
structure.

This instruction cannot control the execution of the following program control
instructions:

goto (cond) goto intr blockrepeat return_int

call (cond) call idle (cond) execute(AD_unit)

return (cond) return reset (cond) execute(D_unit)

trap localrepeat repeat while (cond) repeat

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

Example 1

Syntax Description

if (TC1) execute(AD_unit)

mar(*AR1+)

AC1 = AC1 + *AR1

TC1 is equal to 1, the next instruction is executed (AR1 is incremented by 1).
The content of AC1 is added to the content addressed by AR1 + 1 (2021h) and
the result is stored in AC1.

Before After

AC1 00 0000 4300 AC1 00 0000 6321

TC1 1 TC1 1

CARRY 1 CARRY 0

AR1 0200 AR1 0201

200 2020 200 2020

201 2021 201 2021

XCC Execute Conditionally (if execute)

Instruction Set Descriptions5-162 SWPU068E

Example 2

Syntax Description

if (TC1) execute(AD_unit)

mar(*AR1+)

AC1 = AC1 + *AR1

TC1 is not equal to 1, the next instruction is not executed (AR1 is not
incremented). The content of AC1 is added to the content addressed by AR1
(2020h) and the result is stored in AC1.

Before After

AC1 00 0000 4300 AC1 00 0000 6320

TC1 0 TC1 0

CARRY 1 CARRY 0

AR1 0200 AR1 0200

200 2020 200 2020

201 2021 201 2021

 Execute Conditionally (if execute) XCC

5-163Instruction Set DescriptionsSWPU068E

Execute Conditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] if (cond) execute(D_Unit) No 2 1 X

Opcode 1001 0110 1CCC CCCC

1001 1110 1CCC CCCC

1001 1111 1CCC CCCC

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands cond

Description This instruction evaluates a single condition defined by the cond field and
allows you to control the execution flow of an instruction, or instructions, from
the execute phase of the pipeline. This instruction differs from instruction [1]
because in this instruction operations performed in the address phase are
always executed. See Table 1−3 for a list of conditions.

When this instruction moves into the execute phase of the pipeline, the
condition specified in the cond field is evaluated. If the tested condition is true,
the conditional instruction(s) is read and executed; if the tested condition is
false, the conditional instruction(s) is not read and program control is passed
to the instruction following the conditional instruction(s) or to the program
address defined by label. There is a 0-cycle latency for the condition testing.

� This instruction may be executed alone:

if(cond) execute(D_unit)
instruction_executes_conditionally

label:

� This instruction may be executed with two paralleled instructions:

if(cond) execute(D_unit)
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

label:

� This instruction may be executed with the instruction with which it is
paralleled. When this instruction syntax is used and the instruction to be
executed conditionally is a store-to-memory instruction, there is a 1-cycle
latency for the condition setting.

if(cond) execute(D_unit)
|| instruction_executes_conditionally

label:

XCC Execute Conditionally (if execute)

Instruction Set Descriptions5-164 SWPU068E

� This instruction may be executed with a previous instruction:

previous_instruction
|| if(cond) execute(D_unit)
instruction_executes_conditionally

label:

� This instruction may be executed with a previous instruction and two
paralleled instructions:

previous_instruction
|| if(cond) execute(D_unit)
instruction_1_executes_conditionally
|| instruction_2_executes_conditionally

label:

This instruction cannot be used as the last instruction in a repeat loop
structure.

When the instruction to be executed conditionally is an instruction to read data
from memory, the data read operation is performed regardless of the condition
and the read data is discarded at the execute phase if the condition is false.

This instruction cannot control the execution of the following program control
instructions:

goto (cond) goto intr blockrepeat return_int

call (cond) call idle (cond) execute(AD_unit)

return (cond) return reset (cond) execute(D_unit)

trap localrepeat repeat while (cond) repeat

and an instruction to read data from I/O space.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

 Execute Conditionally (if execute) XCC

5-165Instruction Set DescriptionsSWPU068E

Example 1

Syntax Description

if (TC1) execute(D_unit)

mar(*AR1+)

AC1 = AC1 + *AR1

TC1 is equal to 1, the next instruction is executed (AR1 is incremented by 1).
The content of AC1 is added to the content addressed by AR1 + 1 (2021h) and
the result is stored in AC1.

Before After

AC1 00 0000 4300 AC1 00 0000 6321

TC1 1 TC1 1

CARRY 1 CARRY 0

AR1 0200 AR1 0201

200 2020 200 2020

201 2021 201 2021

Example 2

Syntax Description

if (TC1) execute(D_unit)

mar(*AR1+)

AC1 = AC1 + *AR1

TC1 is not equal to 1, the next instruction would not be executed; however,
since the next instruction is a pointer modification, AR1 is incremented by 1
in the address phase. The content of AC1 is added to the content addressed
by AR1 + 1 (2021h) and the result is stored in AC1.

Before After

AC1 00 0000 4300 AC1 00 0000 6321

TC1 0 TC1 0

CARRY 1 CARRY 0

AR1 0200 AR1 0201

200 2020 200 2020

201 2021 201 2021

BFXPA Expand Accumulator Bit Field (field_expand)

Instruction Set Descriptions5-166 SWPU068E

Expand Accumulator Bit FieldBFXPA

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = field_expand(ACx, k16) No 4 1 X

Opcode 0111 0110 kkkk kkkk kkkk kkkk FDDD 01SS

Operands ACx, dst, k16

Description This instruction performs a bit field manipulation in the D-unit shifter. When the
destination register (dst) is an A-unit register (ARx or Tx), a dedicated bus
carries the output of the D-unit shifter directly into dst.

The 16-bit field mask, k16, is scanned from the least significant bits (LSBs) to
the most significant bits (MSBs). According to the bit set to 1 in the bit field
mask, the 16 LSBs of the source accumulator (ACx) bits are extracted and
separated with 0 toward the MSBs. The result is stored in the dst.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Extract Accumulator Bit Field

Example

Syntax Description

T2 = field_expand(AC0,#8024h) Each bit of the unsigned 16-bit value (8024h) is scanned from the LSB
to the MSB to test for a 1. If the bit is set to 1, the bit in AC0 is
extracted and separated with 0 toward the MSB in T2; otherwise, the
corresponding bit in AC0 is not extracted. The result is stored in T2.

Execution

#k16 (8024h) 1000 0000 0010 0100

AC0(15−0) 0010 1011 0110 0101

T2 1000 0000 0000 0100

Before After

AC0 00 2300 2B65 AC0 00 2300 2B65

T2 0000 T2 8004

 Extract Accumulator Bit Field (field_extract) BFXTR

5-167Instruction Set DescriptionsSWPU068E

Extract Accumulator Bit FieldBFXTR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = field_extract(ACx, k16) No 4 1 X

Opcode 0111 0110 kkkk kkkk kkkk kkkk FDDD 00SS

Operands ACx, dst, k16

Description This instruction performs a bit field manipulation in the D-unit shifter. When the
destination register (dst) is an A-unit register (ARx or Tx), a dedicated bus
carries the output of the D-unit shifter directly into dst.

The 16-bit field mask, k16, is scanned from the least significant bits (LSBs) to
the most significant bits (MSBs). According to the bit set to 1 in the bit field
mask, the corresponding 16 LSBs of the source accumulator (ACx) bits are
extracted and packed toward the LSBs. The result is stored in the dst.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Expand Accumulator Bit Field

Example

Syntax Description

T2 = field_extract(AC0,#8024h) Each bit of the unsigned 16-bit value (8024h) is scanned from the LSB
to the MSB to test for a 1. If the bit is set to 1, the corresponding bit in
AC0 is extracted and packed toward the LSB in T2; otherwise, the
corresponding bit in AC0 is not extracted. The result is stored in T2.

Execution

#k16 (8024h) 1000 0000 0010 0100

AC0(15−0) 0101 0101 1010 1010

T2 0000 0000 0000 0010

Before After

AC0 00 2300 55AA AC0 00 2300 55AA

T2 0000 T2 0002

FIRSSUB Finite Impulse Response Filter, Antisymmetrical (firsn)

Instruction Set Descriptions5-168 SWPU068E

Finite Impulse Response Filter, AntisymmetricalFIRSSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] firsn(Xmem, Ymem, coef(Cmem), ACx, ACy) No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 11mm DDx1 DDU%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and subtraction. The firsn() operation is executed:

ACy = ACy + (ACx * Cmem),
ACx = (Xmem << #16) − (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of ACx(32−16) and
the content of a data memory operand Cmem, addressed using the coefficient
addressing mode, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The second operation subtracts the content of data memory operand Ymem,
shifted left 16 bits, from the content of data memory operand Xmem, shifted
left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

 Finite Impulse Response Filter, Antisymmetrical (firsn) FIRSSUB

5-169Instruction Set DescriptionsSWPU068E

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Finite Impulse Response Filter, Symmetrical

Example

Syntax Description

firsn(*AR0, *AR1, coef(*CDP), AC0, AC1) The content of AC0(32–16) multiplied by the content addressed
by the coefficient data pointer register (CDP) is added to the
content of AC1 and the result is stored in AC1. The content
addressed by AR1 shifted left by 16 bits is subtracted from the
content addressed by AR0 shifted left by 16 bits and the result is
stored in AC0.

Before After

AC0 00 6900 0000 AC0 00 4500 0000

AC1 00 0023 0000 AC1 FF D8ED 3F00

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

SXMD 0 SXMD 0

FIRSADD Finite Impulse Response Filter, Symmetrical (firs)

Instruction Set Descriptions5-170 SWPU068E

Finite Impulse Response Filter, SymmetricalFIRSADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] firs(Xmem, Ymem, coef(Cmem), ACx, ACy) No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 11mm DDx0 DDU%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and addition. The firs() operation is executed:

ACy = ACy + (ACx * Cmem),
ACx = (Xmem << #16) + (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of ACx(32−16) and
the content of a data memory operand Cmem, addressed using the coefficient
addressing mode, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The second operation performs an addition operation between the content of
data memory operand Xmem, shifted left 16 bits, and the content of data
memory operand Ymem, shifted left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

 Finite Impulse Response Filter, Symmetrical (firs) FIRSADD

5-171Instruction Set DescriptionsSWPU068E

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Finite Impulse Response Filter, Antisymmetrical

Example

Syntax Description

firs(*AR0, *AR1, coef(*CDP), AC0, AC1) The content of AC0(32–16) multiplied by the content addressed by
the coefficient data pointer register (CDP) is added to the content of
AC1 and the result is stored in AC1. The content addressed by AR0
shifted left by 16 bits is added to the content addressed by AR1
shifted left by 16 bits and the result is stored in AC0.

Before After

AC0 00 6900 0000 AC0 00 2300 0000

AC1 00 0023 0000 AC1 FF D8ED 3F00

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 1

FRCT 0 FRCT 0

SXMD 0 SXMD 0

IDLE idle

Instruction Set Descriptions5-172 SWPU068E

IdleIDLE

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] idle No 4 ? D

Opcode 0111 1010 xxxx xxxx xxxx xxxx xxxx 110x

Operands none

Description This instruction forces the program being executed to wait until an interrupt or
a reset occurs. The power-down mode that the processor operates in depends
on a configuration register accessible through the peripheral access
mechanism.

Status Bits Affected by INTM

Affects none

Repeat This instruction cannot be repeated.

 Least Mean Square (lms) LMS

5-173Instruction Set DescriptionsSWPU068E

Least Mean SquareLMS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] lms(Xmem, Ymem, ACx, ACy) No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 110x xxx%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC), and addition. The instruction is executed:

ACy = ACy + (Xmem * Ymem),
ACx = rnd(ACx + (Xmem << #16))

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, sign extended to 17 bits, and the content of data memory
operand Ymem, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

The second operation performs an addition between an accumulator content
and the content of data memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40.

� Rounding is performed according to RDM.

LMS Least Mean Square (lms)

Instruction Set Descriptions5-174 SWPU068E

� When an overflow is detected on the result of the rounding, the
accumulator is saturated according to SATD. Note that no overflow
detection is performed on the intermediate result after the addition but
before the rounding.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the 16 lowest bits of
ACx. The addition operation has no overflow detection, report, and saturation
after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

lms(*AR0, *AR1, AC0, AC1) The content addressed by AR0 multiplied by the content addressed by AR1 is
added to the content of AC1 and the result is stored in AC1. The content
addressed by AR0 shifted left by 16 bits is added to the content of AC0. The
result is rounded and stored in AC0.

Before After

AC0 00 1111 2222 AC0 00 2111 0000

AC1 00 1000 0000 AC1 00 1200 0000

*AR0 1000 *AR0 1000

*AR1 2000 *AR1 2000

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

 Least Mean Square (lmsf) LMSF

5-175Instruction Set DescriptionsSWPU068E

Least Mean Square (LMSF)LMSF

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] lmsf(Xmem, Ymem, ACx, ACy) No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 0110 0001

Operands ACx, ACy, Xmem, Ymem, T3

Description This instruction performs three parallel operations in one cycle. The
operations are executed in the D-unit MAC and D-unit ALU. The instruction is
executed :

ACx = T3 * (Ymem)
ACy = ACy + (Xmem) * (Ymem)
Xmem = HI(rnd(ACx + (Xmem)<<#16))

The first operation performs a multiplication in D-unit MAC1. The input
operands of the multiplier are the content of data register T3 and the content
of data memory operand Ymem. The implied T3 operand is sign extended to
17 bits in the MAC1. The data memory operand Ymem is addressed by
DAGEN path Y by using Ymem addressing mode, driven on the CDB bus, and
sign extended to 17 bits in the MAC1.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The second operation performs a multiplication and an addition in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Xmem and the content of data memory operand Ymem. The data
memory operand Xmem is addressed by DAGEN path X by using Xmem
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC2. The other data memory operand Ymem is addressed by DAGEN path
Y by using the Ymem addressing mode, driven on data bus CDB, and sign
extended to 17 bits in the MAC2.

LMSF Least Mean Square (lmsf)

Instruction Set Descriptions5-176 SWPU068E

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The third operation performs an addition between an accumulator content and
the content of data memory operand Xmem in the D-unit ALU. The data
memory operand Xmem is driven on the DDB bus as described in the above
second operation, sign extended to 40 bits according to SXMD, shifted to the
left by 16 bits, and supplied to the D-unit ALU.

� The shift operation is identical to the arithmetic shift instruction. Therefore,
an overflow detection, report, and saturation is done after the shifting
operation.

� Overflow and CARRY detection are operated as M40 is locally set to 0.

� Addition overflow is always detected at bit position 31.

� Addition carry report in CARRY status bit is always extracted at bit position
31.

� A rounding is always performed on the result of the addition. The rounding
operation depends on the RDM status value.

� When RDM is 0, the biased rounding to the infinite is performed. 2^15 is
added to the 40-bit result of the accumulation.

� When RDM is 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit result of accumulation,
2^15 is added as the following pseudo code description.

if(2^15 < bit(15−0) < 2^16)
add 2^15 to the 40−bit result of the accumulation

else if(bit(15−0) == 2^15)
if(bit(16) == 1)

add 2^15 to the 40−bit result of the
accumulation

� When an overflow is detected on the result of the rounding, the
accumulator is saturated according to SATD. Note that no overflow

 Least Mean Square (lmsf) LMSF

5-177Instruction Set DescriptionsSWPU068E

detection is performed on the intermediate result after the addition but
before the rounding.

� If an overflow resulting from the shift, or the addition/rounding, is detected,
then the accumulator 0 overflow status bit is set (ACOV0). (In the
exceptional case, even if the result of addition is overflowed, the rounding
operation may suppress the overflow report.)

� When an overflow is detected, the result is saturated according to SATD,
before being stored in memory. Saturation values are 7FFFh or 8000h.

� The result of the third operation, high part of ACx is stored into the data
memory location addressed by Xmem via the Ebus.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0 and C54CM = 1, compatibility
is ensured due to following the implementation of the lms instruction.

� The rounding is performed without clearing the 16 lowest bits of ACx.

� The addition operation has no overflow detection, report, and saturation
after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SXMD,

Affects ACOVx, ACOVy, ACOV0, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

lmsf(*AR2−,*AR3+,AC0,AC1);
SXM=1, FRCT=1;
assuming 4KW bank DARAM

The product of the content addressed by AR2 and the content addressed by
AR3 is added to the content of AC1 and the result is stored in AC1. The
content addressed by AR2, shifted to the left by 16 bits, is added to the con-
tent of AC0. The result is rounded and stored in AC0.

Execution

T3[16:0] * ((Ymem)[16:0])) −> ACx[39:0]

ACy[39:0]+(Xmem)[16:0]*(Ymem))[16:0])) −> ACy[39:0]

HI(rnd(ACx[39:0]+((Xmem)<<#16))) −> Xmem

LMSF Least Mean Square (lmsf)

Instruction Set Descriptions5-178 SWPU068E

Before After

AC0 00 3FFF 8000 AC0 00 0200 0000

AC1 00 0000 8000 AC1 00 0004 8000

T3 8000 T3 8000

XAR2 00 30FF XAR2 00 30FE

XAR3 00 2000 XAR3 00 2001

Data memory

2000h FE00 2000h FE00

30FFh FF00 30FFh 3F00

 Linear Addressing Qualifier (linear) .LR

5-179Instruction Set DescriptionsSWPU068E

Linear Addressing Qualifier.LR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] linear() No 1 1 AD

Opcode 1001 1100

Operands none

Description This instruction is an instruction qualifier that can be paralleled only with any
instruction making an indirect Smem, Xmem, Ymem, Lmem, Baddr, or Cmem
addressing or mar instructions. This instruction cannot be executed in parallel
with any other types of instructions and it cannot be executed as a stand-alone
instruction (assembler generates an error message).

When this instruction is used in parallel, all modifications of ARx and CDP
pointer registers used in the indirect addressing mode are done linearly (as if
ST2_55 register bits 0 to 8 were cleared to 0).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-180 SWPU068E

Load Accumulator from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = rnd(Smem << Tx) No 3 1 X

[2] ACx = low_byte(Smem) << #SHIFTW No 3 1 X

[3] ACx = high_byte(Smem) << #SHIFTW No 3 1 X

[4] ACx = Smem << #16 No 2 1 X

[5] ACx = uns(Smem) No 3 1 X

[6] ACx = uns(Smem) << #SHIFTW No 4 1 X

[7] ACx = M40(dbl(Lmem)) No 3 1 X

[8] LO(ACx) = Xmem,
HI(ACx) = Ymem

No 3 1 X

Description These instructions load a 16-bit signed constant, K16, the content of a memory
(Smem) location, the content of a data memory operand (Lmem), or the
content of dual data memory operands (Xmem and Ymem) to a selected
accumulator (ACx).

Status Bits Affected by C54CM, M40, RDM, SATD, SXMD

Affects ACOVx

See Also See the following other related instructions:

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator Pair from Memory

� Load Accumulator with Immediate Value

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

� Load Auxiliary or Temporary Register Pair from Memory

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

 Load Accumulator from Memory MOV

5-181Instruction Set DescriptionsSWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = rnd(Smem << Tx) No 3 1 X

Opcode 1101 1101 AAAA AAAI x%DD ss11

Operands ACx, Smem, Tx

Description This instruction loads the content of a memory (Smem) location shifted by the
content of Tx to the accumulator (ACx):

� The input operand is sign extended to 40 bits according to SXMD.

� The input operand is shifted by the 4-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� Rounding is performed in the D-unit shifter according to RDM, if the
optional rnd keyword is applied to the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation. The 6 LSBs of Tx are used to determine the shift quantity.
The 6 LSBs of Tx define a shift quantity within –32 to +31. When the value is
between –32 to –17, a modulo 16 operation transforms the shift quantity to
within –16 to –1.

Status Bits Affected by C54CM, M40, RDM, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 << T0 AC0 is loaded with the content addressed by AR3 shifted by the content of T0.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-182 SWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = low_byte(Smem) << #SHIFTW No 3 1 X

Opcode 1110 0001 AAAA AAAI DDSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction loads the low-byte content of a memory (Smem) location
shifted by the 6-bit value, SHIFTW, to the accumulator (ACx):

� The content of the memory location is sign extended to 40 bits according
to SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = low_byte(*AR3) << #31 The low-byte content addressed by AR3 is shifted left by 31 bits and
loaded into AC0.

 Load Accumulator from Memory MOV

5-183Instruction Set DescriptionsSWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACx = high_byte(Smem) << #SHIFTW No 3 1 X

Opcode 1110 0010 AAAA AAAI DDSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction loads the high-byte content of a memory (Smem) location
shifted by the 6-bit value, SHIFTW, to the accumulator (ACx):

� The content of the memory location is sign extended to 40 bits according
to SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = high_byte(*AR3) << #31 The high-byte content addressed by AR3 is shifted left by 31 bits and
loaded into AC0.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-184 SWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACx = Smem << #16 No 2 1 X

Opcode 1011 00DD AAAA AAAI

Operands ACx, Smem

Description This instruction loads the content of a memory (Smem) location shifted left by
16 bits to the accumulator (ACx):

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation is done after the shifting
operation

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = *AR3+ << #16 The content addressed by AR3 shifted left by 16 bits is loaded into AC1. AR3 is
incremented by 1.

Before After

AC1 00 0200 FC00 AC1 00 3400 0000

AR3 0200 AR3 0201

200 3400 200 3400

 Load Accumulator from Memory MOV

5-185Instruction Set DescriptionsSWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACx = uns(Smem) No 3 1 X

Opcode 1101 1111 AAAA AAAI xxDD 010u

Operands ACx, Smem

Description This instruction loads the content of a memory (Smem) location to the
accumulator (ACx):

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(*AR3) The content addressed by AR3 is zero extended to 40 bits and loaded into AC0.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-186 SWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACx = uns(Smem) << #SHIFTW No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW xxDD 10xx

Operands ACx, SHIFTW, Smem

Description This instruction loads the content of a memory (Smem) location, shifted by the
6-bit value, SHIFTW, to the accumulator (ACx):

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The input operand is shifted by the 6-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(*AR3) << #31 The content addressed by AR3 is zero extended to 40 bits, shifted left by
31 bits, and loaded into AC0.

 Load Accumulator from Memory MOV

5-187Instruction Set DescriptionsSWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACx = M40(dbl(Lmem)) No 3 1 X

Opcode 1110 1101 AAAA AAAI xxDD 100g

Operands ACx, Lmem

Description This instruction loads the content of data memory operand (Lmem) to the
accumulator (ACx):

� The input operand is sign extended to 40 bits according to SXMD.

� The load operation in the accumulator uses a dedicated path independent
of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Status bit M40 is locally set to 1, if the optional M40 keyword is applied to
the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = dbl(*AR3–) The content (long word) addressed by AR3 and AR3 + 1 is loaded into AC0.
Because this instruction is a long−operand instruction, AR3 is decremented by 2
after the execution.

MOV Load Accumulator from Memory

Instruction Set Descriptions5-188 SWPU068E

Load Accumulator from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] LO(ACx) = Xmem,
HI(ACx) = Ymem

No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 10DD

Operands ACx, Xmem, Ymem

Description This instruction performs a dual 16-bit load of accumulator high and low parts.
The operation is executed in dual 16-bit mode; however, it is independent of
the 40-bit D-unit ALU. The 16 lower bits of the accumulator are separated from
the higher 24 bits and the 8 guard bits are attached to the higher 16-bit
datapath.

� The data memory operand Xmem is loaded as a 16-bit operand to the
destination accumulator (ACx) low part. And, according to SXMD the data
memory operand Ymem is sign extended to 24 bits and is loaded to the
destination accumulator (ACx) high part.

� For the load operations in higher accumulator bits, overflow detection is
performed at bit position 31. If an overflow is detected, the destination
accumulator overflow status bit (ACOVx) is set.

� If SATD is 1 when an overflow is detected on the higher data path, a
saturation is performed with saturation value of 00 7FFFh.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, this instruction is executed as if SATD was locally cleared to 0.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

LO(AC0) = *AR3,
HI(AC0) = *AR4

The content at the location addressed by AR4, sign extended to 24 bits, is loaded
into AC0(39–16) and the content at the location addressed by AR3 is loaded into
AC0(15–0).

 Load Accumulator from Memory with Parallel Store Accumulator Content to Memory MOV::MOV

5-189Instruction Set DescriptionsSWPU068E

Load Accumulator from Memory with Parallel Store Accumulator
Content to Memory

MOV::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = Xmem << #16,
Ymem = HI(ACx << T2)

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 110x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel: load and store.

The first operation loads the content of data memory operand Xmem shifted
left by 16 bits to the accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31−16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = Xmem << #16,
Ymem = HI(saturate(uns(ACx << T2)))

MOV::MOV Load Accumulator from Memory with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-190 SWPU068E

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = Xmem << #16,
Ymem = HI(saturate(ACx << T2))

Status Bits Affected by C54CM, M40, RDM, SATD, SST, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Accumulator from Memory

� Load Accumulator Pair from Memory

� Load Accumulator with Immediate Value

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Example

Syntax Description

AC0 = *AR3 << #16,
*AR4 = HI(AC1 << T2)

Both instructions are performed in parallel. The content addressed by AR3 shifted
left by 16 bits is stored in AC0. The content of AC1 is shifted by the content of T2, and
AC1(31−16) is stored at the address of AR4.

 Load Accumulator Pair from Memory MOV

5-191Instruction Set DescriptionsSWPU068E

Load Accumulator Pair from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] pair(HI(ACx)) = Lmem No 3 1 X

[2] pair(LO(ACx)) = Lmem No 3 1 X

Description These instructions load the content of a data memory operand (Lmem) to the
selected accumulator pair, ACx and AC(x + 1).

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, ACOV(x + 1)

See Also See the following other related instructions:

� Load Accumulator from Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator with Immediate Value

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

� Load Auxiliary or Temporary Register Pair from Memory

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

MOV Load Accumulator Pair from Memory

Instruction Set Descriptions5-192 SWPU068E

Load Accumulator Pair from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] pair(HI(ACx)) = Lmem No 3 1 X

Opcode 1110 1101 AAAA AAAI 00DD 1010

Operands ACx, Lmem

Description This instruction loads the 16 MSBs of data memory operand (Lmem) to the
24 MSBs of the destination accumulator (ACx) and loads the 16 LSBs of the
data memory operand (Lmem) to the 24 MSBs of the destination accumulator
AC(x+1).

� The 16 MSBs and 16 LSBs of the source memory operand (Lmem) are
sign extended to 24 bits and loaded into the 24 MSBs of the destination
accumulator ACx and AC(x+1) according to the SXMD.

� For the load operation in higher accumulator bits, overflow detection is
performed at bit position 31. If an overflow is detected, the destination
accumulator overflow status bit is set.

� The valid combination of source accumulators are AC0/AC1 and
AC2/AC3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation are done after the
operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, ACOV(x + 1)

Repeat This instruction can be repeated.

Example

Syntax Description

pair(HI(AC2)) = *AR3+ The 16 highest bits of the content at the location addressed by AR3 are loaded
into AC2(31–16). The 16 lowest bits of the content at the location addressed by
AR3 + 1 when the value in AR3 is even or AR3 − 1 when AR3 is odd are loaded
into AC3(31–16). AR3 is incremented by 1.

 Load Accumulator Pair from Memory MOV

5-193Instruction Set DescriptionsSWPU068E

Execution

(Lmem[31:16]) −> ACx[39:16],

(Lmem[15:0]) −> AC(x+1)[39:16]

Before After

AC1 FF FFFF 8000 AC1 00 1234 8000

AC2 00 1234 1234 AC2 FF ABCD 8000

XAR3 00 2000 XAR3 00 2002

Data memory

2000h 1234 2000h 1234

2001h ABCD 2001h ABCD

MOV Load Accumulator Pair from Memory

Instruction Set Descriptions5-194 SWPU068E

Load Accumulator Pair from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] pair(LO(ACx)) = Lmem No 3 1 X

Opcode 1110 1101 AAAA AAAI 00DD 1100

Operands ACx, Lmem

Description This instruction loads the 16 MSBs of data memory operand (Lmem) to the
16 LSBs of the destination accumulator (ACx) and loads the 16 LSBs of the
data memory operand (Lmem) to the 16 LSBs of the destination accumulator
AC(x+1).

� The 16 LSBs of the source accumulator ACx is sign extended to 24 bits
and loaded into the 24 MSBs of the destination accumulator ACy
according to the SXMD.

� For the load operation in higher accumulator bits, overflow detection is
performed at bit position 31. If an overflow is detected, the destination
accumulator overflow status bit is set.

� When an overflow is detected on higher data path at SXMD=0 and
ACx[15]=1, a saturation is performed with a saturation value of 00 7FFFh.

� The valid combination of source accumulators are AC0/AC1 and
AC2/AC3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by C54CM, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

pair(LO(AC0)) = *AR3 The 16 highest bits of the content at the location addressed by AR3 are loaded
into AC0(15–0). The 16 lowest bits of the content at the location addressed by
AR3 + 1 when the value in AR3 is even or AR3 − 1 when AR3 is odd are loaded
into AC1(15–0).

 Load Accumulator Pair from Memory MOV

5-195Instruction Set DescriptionsSWPU068E

Execution

(Lmem[31:16]) −> ACx[15:0],

(Lmem[15:0]) −> AC(x+1)[15:0]

Before After

AC3 00 1234 5678 AC3 00 1234 ABCD

AC0 FF FFFF FFFF AC0 FF FFFF 1234

XAR5 00 2001 XAR5 00 1FFF

Data memory

2000h 1234 2000h 1234

2001h ABCD 2001h ABCD

MOV Load Accumulator with Immediate Value

Instruction Set Descriptions5-196 SWPU068E

Load Accumulator with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = K16 << #16 No 4 1 X

[2] ACx = K16 << #SHFT No 4 1 X

Description These instructions load a 16-bit signed constant, K16, to a selected
accumulator (ACx).

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

See Also See the following other related instructions:

� Load Accumulator from Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator Pair from Memory

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

� Load Auxiliary or Temporary Register Pair from Memory

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

 Load Accumulator with Immediate Value MOV

5-197Instruction Set DescriptionsSWPU068E

Load Accumulator with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = K16 << #16 No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK xxDD 101x

Operands ACx, K16

Description This instruction loads the 16-bit signed constant, K16, shifted left by 16 bits to
the accumulator (ACx):

� The 16-bit constant, K16, is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, overflow detection, report, and saturation is done after the shifting
operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = #−2 << #16 AC0 is loaded with the signed 16-bit value (−2) shifted left by 16 bits.

MOV Load Accumulator with Immediate Value

Instruction Set Descriptions5-198 SWPU068E

Load Accumulator with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = K16 << #SHFT No 4 1 X

Opcode 0111 0101 KKKK KKKK KKKK KKKK xxDD SHFT

Operands ACx, K16, SHFT

Description This instruction loads the 16-bit signed constant, K16, shifted left by the 4-bit
value, SHFT, to the accumulator (ACx):

� The 16-bit constant, K16, is sign extended to 40 bits according to SXMD.

� The input operand is shifted by the 4-bit value in the D-unit shifter. The shift
operation is equivalent to the signed shift instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = #−2 << #15 AC0 is loaded with the signed 16-bit value (−2) shifted left by 15 bits.

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-199Instruction Set DescriptionsSWPU068E

Load Accumulator, Auxiliary, or Temporary Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = Smem No 2 1 X

[2] dst = uns(high_byte(Smem)) No 3 1 X

[3] dst = uns(low_byte(Smem)) No 3 1 X

Description These instructions load the content of a memory (Smem) location to a selected
destination (dst) register.

Status Bits Affected by M40, SXMD

Affects none

See Also See the following other related instructions:

� Load Accumulator from Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator Pair from Memory

� Load Accumulator with Immediate Value

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

� Load Auxiliary or Temporary Register Pair from Memory

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-200 SWPU068E

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = Smem No 2 1 X

Opcode 1010 FDDD AAAA AAAI

Operands dst, Smem

Description This instruction loads the content of a memory (Smem) location to the
destination (dst) register.

� When the destination register is an accumulator:

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The content of the memory location is sign extended to 16 bits.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AR1 = *AR3+ AR1 is loaded with the content addressed by AR3. AR3 is incremented by 1.

Before After

AR1 FC00 AR1 3400

AR3 0200 AR3 0201

200 3400 200 3400

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-201Instruction Set DescriptionsSWPU068E

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = uns(high_byte(Smem)) No 3 1 X

Opcode 1101 1111 AAAA AAAI FDDD 000u

Operands dst, Smem

Description This instruction loads the high-byte content of a memory (Smem) location to the
destination (dst) register.

� When the destination register is an accumulator:

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The memory operand is extended to 16 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 16 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 16 bits
regardless of SXMD.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-202 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(high_byte(*AR3)) The high-byte content addressed by AR3 is zero extended to 40 bits and
loaded into AC0.

 Load Accumulator, Auxiliary, or Temporary Register from Memory MOV

5-203Instruction Set DescriptionsSWPU068E

Load Accumulator, Auxiliary, or Temporary Register from Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = uns(low_byte(Smem)) No 3 1 X

Opcode 1101 1111 AAAA AAAI FDDD 001u

Operands dst, Smem

Description This instruction loads the low-byte content of a memory (Smem) location to the
destination (dst) register.

� When the destination register is an accumulator:

� The memory operand is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits
according to SXMD.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The memory operand is extended to 16 bits according to uns.

� If the optional uns keyword is applied to the input operand, the
content of the memory location is zero extended to 16 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 16 bits
regardless of SXMD.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

MOV Load Accumulator, Auxiliary, or Temporary Register from Memory

Instruction Set Descriptions5-204 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(low_byte(*AR3)) The low-byte content addressed by AR3 is zero extended to 40 bits and
loaded into AC0.

 Load Accumulator, Auxiliary, or Temporary Register with Immediate Value MOV

5-205Instruction Set DescriptionsSWPU068E

Load Accumulator, Auxiliary, or Temporary Register with Immediate
Value

MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = k4 Yes 2 1 X

[2] dst = –k4 Yes 2 1 X

[3] dst = K16 No 4 1 X

Description These instructions load a 4-bit unsigned constant, k4; the 2s complement
representation of the 4-bit unsigned constant; or a 16-bit signed constant, K16,
to a selected destination (dst) register.

Status Bits Affected by M40, SXMD

Affects none

See Also See the following other related instructions:

� Load Accumulator from Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator Pair from Memory

� Load Accumulator with Immediate Value

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Auxiliary or Temporary Register Pair from Memory

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

MOV Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Instruction Set Descriptions5-206 SWPU068E

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = k4 Yes 2 1 X

Opcode 0011 110E kkkk FDDD

Operands dst, k4

Description This instruction loads the 4-bit unsigned constant, k4, to the destination (dst)
register.

� When the destination register is an accumulator:

� The 4-bit constant, k4, is zero extended to 40 bits.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The 4-bit constant, k4, is zero extended to 16 bits.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = #2 AC0 is loaded with the unsigned 4-bit value (2).

 Load Accumulator, Auxiliary, or Temporary Register with Immediate Value MOV

5-207Instruction Set DescriptionsSWPU068E

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = –k4 Yes 2 1 X

Opcode 0011 111E kkkk FDDD

Operands dst, k4

Description This instruction loads the 2s complement representation of the 4-bit unsigned
constant, k4, to the destination (dst) register.

� When the destination register is an accumulator:

� The 4-bit constant, k4, is negated in the I-unit, loaded into the
accumulator, and sign extended to 40 bits before being processed by
the D-unit as a signed constant.

� The load operation in the destination register uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

� When the destination register is an auxiliary or temporary register:

� The 4-bit constant, k4, is zero extended to 16 bits and negated in the
I-unit before being processed by the A-unit as a signed K16 constant.

� The load operation in the destination register uses a dedicated path
independent of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = #−2 AC0 is loaded with a 2s complement representation of the unsigned 4-bit value (2).

MOV Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Instruction Set Descriptions5-208 SWPU068E

Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = K16 No 4 1 X

Opcode 0111 0110 KKKK KKKK KKKK KKKK FDDD 10xx

Operands dst, K16

Description This instruction loads the 16-bit signed constant, K16, to the destination (dst)
register.

� When the destination register is an accumulator, the 16-bit constant, K16,
is sign extended to 40 bits according to SXMD.

� When the destination register is an auxiliary or temporary register, the load
operation in the destination register uses a dedicated path independent
of the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = #248 AC1 is loaded with the signed 16-bit value (248).

Before After

AC1 00 0200 FC00 AC1 00 0000 00F8

 Load Auxiliary or Temporary Register Pair from Memory MOV

5-209Instruction Set DescriptionsSWPU068E

Load Auxiliary or Temporary Register Pair from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] pair(TAx) = Lmem No 3 1 X

Opcode 1110 1101 AAAA AAAI FDDD 111x

Operands Lmem, TAx

Description This instruction loads the 16 highest bits of data memory operand (Lmem) to
the temporary or auxiliary register (TAx) and loads the 16 lowest bits of data
memory operand (Lmem) to temporary or auxiliary register TA(x + 1):

� The load operation in the temporary or auxiliary register uses a dedicated
path independent of the A-unit ALU.

� Valid auxiliary registers are AR0, AR2, AR4, and AR6.

� Valid temporary registers are T0 and T2.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Load Accumulator, Auxiliary, or Temporary Register with Immediate Value

� Modify Auxiliary or Temporary Register Content

Example

Syntax Description

pair(T0) = *AR2 The 16 highest bits of the content at the location addressed by AR2 are loaded
into T0 and the 16 lowest bits of the content at the location addressed by AR2 + 1
are loaded into T1.

MOV Load CPU Register from Memory

Instruction Set Descriptions5-210 SWPU068E

Load CPU Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BK03 = Smem No 3 1 X

[2] BK47 = Smem No 3 1 X

[3] BKC = Smem No 3 1 X

[4] BSA01 = Smem No 3 1 X

[5] BSA23 = Smem No 3 1 X

[6] BSA45 = Smem No 3 1 X

[7] BSA67 = Smem No 3 1 X

[8] BSAC = Smem No 3 1 X

[9] BRC0 = Smem No 3 1 X

[10] BRC1 = Smem No 3 1 X

[11] CDP = Smem No 3 1 X

[12] CSR = Smem No 3 1 X

[13] DP = Smem No 3 1 X

[14] DPH = Smem No 3 1 X

[15] PDP = Smem No 3 1 X

[16] SP = Smem No 3 1 X

[17] SSP = Smem No 3 1 X

[18] TRN0 = Smem No 3 1 X

[19] TRN1 = Smem No 3 1 X

[20] RETA = dbl(Lmem) No 3 5 X

Opcode See Table 5−1 (page 5-212).

Operands Lmem, Smem

 Load CPU Register from Memory MOV

5-211Instruction Set DescriptionsSWPU068E

Description Instructions [1] through [19] load the content of a memory (Smem) location to
the destination CPU register. This instruction uses a dedicated datapath
independent of the A-unit ALU and the D-unit operators to perform the
operation. The content of the memory location is zero extended to the bitwidth
of the destination CPU register.

The operation is performed in the execute phase of the pipeline. There is a
3-cycle latency between PDP, DP, SP, SSP, CDP, BSAx, BKx, BRCx, and CSR
loads and their use in the address phase by the A-unit address generator units
or by the P-unit loop control management.

For instruction [10], when BRC1 is loaded, the block repeat save register
(BRS1) is also loaded with the same value.

Instruction [20] loads the content of data memory operand (Lmem) to the 24-bit
RETA register (the return address of the calling subroutine) and to the 8-bit
CFCT register (active control flow execution context flags of the calling
subroutine):

� The 16 highest bits of Lmem are loaded into the CFCT register and into
the 8 highest bits of the RETA register.

� The 16 lowest bits of Lmem are loaded into the 16 lowest bits of the RETA
register.

When instruction [20] is decoded, the CPU pipeline is flushed and the
instruction is executed in 5 cycles, regardless of the instruction context.

Status Bits Affected by none

Affects none

Repeat Instructions [13] and [20] cannot be repeated; all other instructions can be
repeated.

See Also See the following other related instructions:

� Load CPU Register with Immediate Value

MOV Load CPU Register from Memory

Instruction Set Descriptions5-212 SWPU068E

Table 5−1. Opcodes for Load CPU Register from Memory Instruction

No. Syntax Opcode

[1] BK03 = Smem 1101 1100 AAAA AAAI 1001 xx10

[2] BK47 = Smem 1101 1100 AAAA AAAI 1010 xx10

[3] BKC = Smem 1101 1100 AAAA AAAI 1011 xx10

[4] BSA01 = Smem 1101 1100 AAAA AAAI 0010 xx10

[5] BSA23 = Smem 1101 1100 AAAA AAAI 0011 xx10

[6] BSA45 = Smem 1101 1100 AAAA AAAI 0100 xx10

[7] BSA67 = Smem 1101 1100 AAAA AAAI 0101 xx10

[8] BSAC = Smem 1101 1100 AAAA AAAI 0110 xx10

[9] BRC0 = Smem 1101 1100 AAAA AAAI x001 xx11

[10] BRC1 = Smem 1101 1100 AAAA AAAI x010 xx11

[11] CDP = Smem 1101 1100 AAAA AAAI 0001 xx10

[12] CSR = Smem 1101 1100 AAAA AAAI x000 xx11

[13] DP = Smem 1101 1100 AAAA AAAI 0000 xx10

[14] DPH = Smem 1101 1100 AAAA AAAI 1100 xx10

[15] PDP = Smem 1101 1100 AAAA AAAI 1111 xx10

[16] SP = Smem 1101 1100 AAAA AAAI 0111 xx10

[17] SSP = Smem 1101 1100 AAAA AAAI 1000 xx10

[18] TRN0 = Smem 1101 1100 AAAA AAAI x011 xx11

[19] TRN1 = Smem 1101 1100 AAAA AAAI x100 xx11

[20] RETA = dbl(Lmem) 1110 1101 AAAA AAAI xxxx 011x

 Load CPU Register with Immediate Value MOV

5-213Instruction Set DescriptionsSWPU068E

Load CPU Register with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BK03 = k12 Yes 3 1 AD

[2] BK47 = k12 Yes 3 1 AD

[3] BKC = k12 Yes 3 1 AD

[4] BRC0 = k12 Yes 3 1 AD

[5] BRC1 = k12 Yes 3 1 AD

[6] CSR = k12 Yes 3 1 AD

[7] DPH = k7 Yes 3 1 AD

[8] PDP = k9 Yes 3 1 AD

[9] BSA01 = k16 No 4 1 AD

[10] BSA23 = k16 No 4 1 AD

[11] BSA45 = k16 No 4 1 AD

[12] BSA67 = k16 No 4 1 AD

[13] BSAC = k16 No 4 1 AD

[14] CDP = k16 No 4 1 AD

[15] DP = k16 No 4 1 AD

[16] SP = k16 No 4 1 AD

[17] SSP = k16 No 4 1 AD

Opcode See Table 5−2 (page 5-214).

Operands kx

Description These instructions load the unsigned constant, kx, to the destination CPU
register. This instruction uses a dedicated datapath independent of the A-unit
ALU and the D-unit operators to perform the operation. The constant is zero
extended to the bitwidth of the destination CPU register.

For instruction [5], when BRC1 is loaded, the block repeat save register
(BRS1) is also loaded with the same value.

The operation is performed in the address phase of the pipeline.

MOV Load CPU Register with Immediate Value

Instruction Set Descriptions5-214 SWPU068E

Status Bits Affected by none

Affects none

Repeat Instruction [15] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� Load CPU Register from Memory

Table 5−2. Opcodes for Load CPU Register with Immediate Value Instruction

No. Syntax Opcode

[1] BK03 = k12 0001 011E kkkk kkkk kkkk 0100

[2] BK47 = k12 0001 011E kkkk kkkk kkkk 0101

[3] BKC = k12 0001 011E kkkk kkkk kkkk 0110

[4] BRC0 = k12 0001 011E kkkk kkkk kkkk 1001

[5] BRC1 = k12 0001 011E kkkk kkkk kkkk 1010

[6] CSR = k12 0001 011E kkkk kkkk kkkk 1000

[7] DPH = k7 0001 011E xxxx xkkk kkkk 0000

[8] PDP = k9 0001 011E xxxk kkkk kkkk 0011

[9] BSA01 = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 011x

[10] BSA23 = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 100x

[11] BSA45 = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 101x

[12] BSA67 = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 110x

[13] BSAC = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 111x

[14] CDP = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 010x

[15] DP = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 000x

[16] SP = k16 0111 1000 kkkk kkkk kkkk kkkk xxx1 000x

[17] SSP = k16 0111 1000 kkkk kkkk kkkk kkkk xxx0 001x

 Load Extended Auxiliary Register from Memory MOV

5-215Instruction Set DescriptionsSWPU068E

Load Extended Auxiliary Register from MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XAdst = dbl(Lmem) No 3 1 X

Opcode 1110 1101 AAAA AAAI XDDD 1111

Operands Lmem , XAdst

Description This instruction loads the lower 23 bits of the data addressed by data memory
operand (Lmem) to the 23-bit destination register (XARx, XSP, XSSP, XDP, or
XCDP).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Extended Auxiliary Register with Immediate Value

� Modify Extended Auxiliary Register Content

� Move Extended Auxiliary Register Content

� Store Extended Auxiliary Register Content to Memory

Example

Syntax Description

XAR1 = dbl(*AR3) The 7 lowest bits of the content at the location addressed by AR3 and the 16 bits of
the content at the location addressed by AR3 + 1 are loaded into XAR1.

Before After

XAR1 00 0000 XAR1 12 0FD3

AR3 0200 AR3 0200

200 3492 200 3492

201 0FD3 201 0FD3

AMOV Load Extended Auxiliary Register with Immediate Value

Instruction Set Descriptions5-216 SWPU068E

Load Extended Auxiliary Register with Immediate ValueAMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XAdst = k23 No 6 1 AD

Opcode 1110 1100 AAAA AAAI 0DDD 1110

Operands k23, XAdst

Description This instruction loads a 23-bit unsigned constant (k23) into the 23-bit
destination register (XARx, XSP, XSSP, XDP, or XCDP). This operation is
completed in the address phase of the pipeline by the A-unit address
generator. Data memory is not accessed.

The premodification or postmodification of the auxiliary register (ARx), the use
of *port(#K), and the use of the readport() or writeport() qualifier is not
supported for this instruction. The use of auxiliary register offset operations is
supported. If the corresponding bit (ARnLC) in status register ST2_55 is set
to 1, the circular buffer management also controls the result stored in XAdst.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Extended Auxiliary Register from Memory

� Modify Extended Auxiliary Register Content

� Move Extended Auxiliary Register Content

� Store Extended Auxiliary Register Content to Memory

Example

Syntax Description

XAR0 = #7FFFFFh The 23-bit value (7FFFFFh) is loaded into XAR0.

 Load Memory with Immediate Value MOV

5-217Instruction Set DescriptionsSWPU068E

Load Memory with Immediate ValueMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = K8 No 3 1 X

[2] Smem = K16 No 4 1 X

Opcode K8 1110 0110 AAAA AAAI KKKK KKKK

K16 1111 1011 AAAA AAAI KKKK KKKK KKKK KKKK

Operands Kx, Smem

Description These instructions initialize a data memory location. These instructions store
an 8-bit signed constant, K8, or a 16-bit signed constant, K16, to a memory
(Smem) location. They use a dedicated datapath to perform the operation.

For instruction [1], the immediate value is always signed extended to 16 bits
before being stored in memory.

Status Bits Affected by none

Affects none

Repeat Both instructions [1] and [2] can be repeated.

See Also See the following other related instructions:

� Move Memory to Memory

Example

Syntax Description

*(#0501h) = #248 The signed 16-bit value (248) is loaded to address 501h.

Before After

0501 FC00 0501 F800

.LK Lock Access Qualifier

Instruction Set Descriptions5-218 SWPU068E

Lock Access Qualifier.LK

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] lock() No 2 1 D

Opcode 0100 0101 1111 0010

Operands none

Description This is an operand qualifier that can be paralleled with any of 13 instructions
(listed below) which execute a read-modify-write operation to a specific
memory operand. If the lock() qualifier is applied to any of 13 instructions, the
lock signal is activated at the same cycle with the read request and the
corresponding write request follows this read request. This means any
memory request issued by other instructions cannot be located between this
locked read and write request due to stall generation. This also provides a
suitable interface with the OCP.

This operand qualifier cannot be executed:

� Alone

� In parallel with instructions except the 13 lock instructions

Any of the 13 instructions using the lock() qualifier cannot be combined with
any other user-defined parallelism instruction.

The 13 lock instructions which can be paralleled with the lock() qualifier are
listed in the table below.

Number Algebraic Mnemonic

1 TC1 = bit(Smem, k4), bit(Smem, k4) = #1 BTSTSET k4, Smem, TC1

2 TC2 = bit(Smem, k4), bit(Smem, k4) = #1 BTSTSET k4, Smem, TC2

3 TC1 = bit(Smem, k4), bit(Smem, k4) = #0 BTSTCLR k4, Smem, TC1

4 TC2 = bit(Smem, k4), bit(Smem, k4) = #0 BTSTCLR k4, Smem, TC2

5 TC1 = bit(Smem, k4), cbit(Smem, k4) BTSTNOT k4, Smem, TC1

6 TC2 = bit(Smem, k4), cbit(Smem, k4) BTSTNOT k4, Smem, TC2

7 bit(Smem, src) = #1 BSET src, Smem

8 bit(Smem, src) = #0 BCLR src, Smem

9 cbit(Smem, src) BNOT src, Smem

10 Smem = Smem & k16 AND k16, Smem

11 Smem = Smem | k16 OR k16, Smem

12 Smem = Smem ^ k16 XOR k16, Smem

13 Smem = Smem + k16 ADD k16, Smem

 Lock Access Qualifier .LK

5-219Instruction Set DescriptionsSWPU068E

Any of the 13 instructions with the lock() qualifier is not allowed in the
conditional execution context which is applied by “if(cond) execute(D_unit)”
instruction due to OCP compliance. The cases below are illegal and rejected
by the code-gen tools:

if(cond execute(D_unit)
TC1=bit(*ar2+, #2), bit(*ar2+, #2)=#1 || lock()

instruction || if(cond) execute(D_unit)
TC1=bit(*ar2+, #2), bit(*ar2+, #2)=#1 || lock()

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example TC1=bit(*ar2+, #2), bit(*ar2+, #2)=#1 || lock()

Before After

XAR2 00 1780 XAR2 00 1781

Data memory

1780h FE00 1780h FE04

1781h 3800 1781h 3800

TC1 x 0

DELAY Memory Delay (delay)

Instruction Set Descriptions5-220 SWPU068E

Memory DelayDELAY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] delay(Smem) No 2 1 X

Opcode 1011 0110 AAAA AAAI

Operands Smem

Description This instruction copies the content of the memory (Smem) location into the
next higher address (Smem + 1). When the data is copied, the content of the
addressed location remains the same. A dedicated datapath is used to make
this memory move.

When this instruction is executed, the two address register arithmetic units
ARAU X and Y, of the A-unit data address generator unit, are used to compute
the two addresses Smem and Smem + 1. The address generation is not
affected by circular addressing; if Smem points to the end of a circular buffer,
Smem + 1 will point to an address outside the circular buffer.

The soft dual memory addressing mode mechanism cannot be applied to this
instruction. This instruction cannot use the *port(#k16) addressing mode or be
paralleled with the readport() or writeport() operand qualifier.

This instruction cannot be used for accesses to I/O space. Any illegal access
to I/O space generates a hardware bus-error interrupt (BERRINT) to be
handled by the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

delay(*AR1+) The content addressed by AR1 is copied to the next higher address, AR1 + 1. AR1
is incremented by 1.

Before After

AR1 0200 AR1 0201

200 3400 200 3400

201 0D80 201 3400

202 2030 202 2030

 Memory−Mapped Register Access Qualifier (mmap) mmap

5-221Instruction Set DescriptionsSWPU068E

Memory-Mapped Register Access Qualifiermmap

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mmap() No 1 1 D

Opcode 1001 1000

Operands none

Description This is an operand qualifier that can be paralleled with any instruction making
a Smem or Lmem direct memory access (dma). This operand qualifier allows
you to locally prevent the dma access from being relative to the data stack
pointer (SP) or the local data page register (DP). It forces the dma access to
be relative to the memory-mapped register (MMR) data page start address,
00 0000h.

This operand qualifier cannot be executed:

� as a stand-alone instruction (assembler generates an error message)

� in parallel with instructions not embedding an Smem or Lmem data
memory operand

� in parallel with instructions loading or storing a byte to a register (see Load
Accumulator, Auxiliary, or Temporary Register from Memory instructions
[2] and [3]; Load Accumulator from Memory instructions [2] and [3]; and
Store Accumulator, Auxiliary, or Temporary Register Content to Memory
instructions [2] and [3])

The MMRs are mapped as 16-bit data entities between addresses 0h and 5Fh.
The scratch-pad memory that is mapped between addresses 60h and 7Fh of
each main data pages of 64K words cannot be accessed through this
mechanism.

Any instruction using the mmap() modifier cannot be combined with any other
user-defined parallelism instruction.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

T2 = @(AC0_L))
|| mmap()

AC0_L is a keyword representing AC0(15–0). The content of AC0(15–0) is copied
into T2.

AMAR Modify Auxiliary Register Content (mar)

Instruction Set Descriptions5-222 SWPU068E

Modify Auxiliary Register ContentAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Smem) No 2 1 AD

Opcode 1011 0100 AAAA AAAI

Operands Smem

Description This instruction performs, in the A-unit address generation units, the auxiliary
register modification specified by Smem as if a word single data memory
operand access was made. The operation is performed in the address phase
of the pipeline; however, data memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1, the circular buffer management
controls the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the mar() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

 Modify Auxiliary Register Content (mar) AMAR

5-223Instruction Set DescriptionsSWPU068E

See Also See the following other related instructions:

� Modify Auxiliary or Temporary Register Content

� Modify Auxiliary or Temporary Register Content by Addition

� Modify Auxiliary or Temporary Register Content by Subtraction

� Modify Auxiliary Register Content with Parallel Multiply

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Addition

� Modify Extended Auxiliary Register Content by Subtraction

� Parallel Modify Auxiliary Register Contents

Example

Syntax Description

mar(*AR3+) The content of AR3 is incremented by 1.

AMAR::MPY Modify Auxiliary Register Content with Parallel Multiply

Instruction Set Descriptions5-224 SWPU068E

Modify Auxiliary Register Content with Parallel MultiplyAMAR::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Xmem),
ACx = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 11mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs an auxiliary register modification. The auxiliary
register modification is specified by the content of data memory operand
Xmem.

The second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

 Modify Auxiliary Register Content with Parallel Multiply AMAR::MPY

5-225Instruction Set DescriptionsSWPU068E

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional M40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply

Example

Syntax Description

mar(*AR3+),
AC0 = uns(*AR4) * uns(coef(*CDP))

Both instructions are performed in parallel. AR3 is incremented by 1. The
unsigned content addressed by AR4 is multiplied by the unsigned
content addressed by the coefficient data pointer register (CDP) and the
result is stored in AC0.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-226 SWPU068E

Modify Auxiliary Register Content with Parallel Multiply and AccumulateAMAR::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

[2] mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

Description These instructions perform two parallel operations in one cycle: modify
auxiliary register (MAR), and multiply and accumulate (MAC). The operations
are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Auxiliary Register Content with Parallel Multiply

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Accumulate

 Modify Auxiliary Register Content with Parallel Multiply and Accumulate AMAR::MAC

5-227Instruction Set DescriptionsSWPU068E

Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 11mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs an auxiliary register modification. The auxiliary
register modification is specified by the content of data memory operand
Xmem.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-228 SWPU068E

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional M40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

mar(*AR3+),
AC0 = AC0 + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. AR3 is incremented
by 1. The unsigned content addressed by AR4 multiplied by the
unsigned content addressed by the coefficient data pointer
register (CDP) is added to the content of AC0 and the result is
stored in AC0.

 Modify Auxiliary Register Content with Parallel Multiply and Accumulate AMAR::MAC

5-229Instruction Set DescriptionsSWPU068E

Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 01mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs an auxiliary register modification. The auxiliary
register modification is specified by the content of data memory operand
Xmem.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx shifted right by 16 bits. The shifting
operation is performed with a sign extension of source accumulator
ACx(39).

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

AMAR::MAC Modify Auxiliary Register Content with Parallel Multiply and Accumulate

Instruction Set Descriptions5-230 SWPU068E

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

mar(*AR2+),
AC0 = ((AC0 >> #16) + (uns(*AR1) * uns(coef(*CDP))))

Both instructions are performed in parallel. AR2 is
incremented by 1. The unsigned content addressed
by AR1 multiplied by the unsigned content
addressed by the coefficient data pointer register
(CDP) is added to the content of AC0 shifted right by
16 bits and the result is stored in AC0. An overflow
is detected in AC0.

Before After

AC0 00 6900 0000 AC0 00 95C0 9200

AC1 00 0023 0000 AC1 00 0023 0000

*AR1 EF00 *AR1 EF00

AR2 0201 AR2 0202

*CDP A067 *CDP A067

ACOV0 0 ACOV0 1

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

M40 0 M40 0

FRCT 0 FRCT 0

SATD 0 SATD 0

 Modify Auxiliary Register Content with Parallel Multiply and Subtract AMAR::MAS

5-231Instruction Set DescriptionsSWPU068E

Modify Auxiliary Register Content with Parallel Multiply and SubtractAMAR::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Xmem),
ACx = M40(rnd(ACx – (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 00mm uuxx DDg%

Operands ACx, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: modify auxiliary
register (MAR), and multiply and subtract (MAS). The operations are executed
in the two D-unit MACs.

The first operation performs an auxiliary register modification. The auxiliary
register modification is specified by the content of data memory operand
Xmem.

The second operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Ymem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode, extended
to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

AMAR::MAS Modify Auxiliary Register Content with Parallel Multiply and Subtract

Instruction Set Descriptions5-232 SWPU068E

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to locally set M40 to 1 for the execution
of the instruction, if the optional M40 keyword is applied to the instruction.

� For this instruction, the Cmem operand is accessed through the BB bus;
on some C55x-based devices, the BB bus is only connected to internal
memory and not to external memory. To prevent the generation of a bus
error, the Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Auxiliary Register Content with Parallel Multiply

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Subtract

Example

Syntax Description

mar(*AR3+),
AC0 = AC0 – (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. AR3 is
incremented by 1. The unsigned content addressed by AR4
multiplied by the unsigned content addressed by the
coefficient data pointer register (CDP) is subtracted from the
content of AC0 and the result is stored in AC0.

 Modify Auxiliary or Temporary Register Content (mar) AMOV

5-233Instruction Set DescriptionsSWPU068E

Modify Auxiliary or Temporary Register ContentAMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy = TAx) No 3 1 AD

[2] mar(TAx = P8) No 3 1 AD

[3] mar(TAx = D16) No 4 1 AD

Description These instructions perform, in the A-unit address generation units:

� a move from auxiliary or temporary register TAx to auxiliary or temporary
register TAy

� a load in the auxiliary or temporary registers TAx of a program address
defined by a program address label assembled into P8

� a load in the auxiliary or temporary registers TAx of the absolute data
address signed constant D16

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Load Auxiliary or Temporary Register from Memory

� Modify Auxiliary Register Content

� Modify Auxiliary or Temporary Register Content by Addition

� Modify Auxiliary or Temporary Register Content by Subtraction

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Addition

� Modify Extended Auxiliary Register Content by Subtraction

AMOV Modify Auxiliary or Temporary Register Content (mar)

Instruction Set Descriptions5-234 SWPU068E

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy = TAx) No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0001

0001 010E FSSS xxxx FDDD 1001

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, a move from
the auxiliary or temporary register TAx to auxiliary or temporary register TAy.
The operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example 1

Syntax Description

mar(AR0 = AR1) The content of AR1 is copied to AR0.

Example 2

Syntax Description

mar(T0 = T1) The content of T1 is copied to T0.

 Modify Auxiliary or Temporary Register Content (mar) AMOV

5-235Instruction Set DescriptionsSWPU068E

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] mar(TAx = P8) No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0101

0001 010E PPPP PPPP FDDD 1101

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, a load in the
auxiliary or temporary registers TAx of a program address defined by a
program address label assembled into P8. The operation is performed in the
address phase of the pipeline; however, data memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example 1

Syntax Description

mar(AR0 = #255) The unsigned 8-bit value (255) is copied to AR0.

Example 2

Syntax Description

mar(T0 = #255) The unsigned 8-bit value (255) is copied to T0.

AMOV Modify Auxiliary or Temporary Register Content (mar)

Instruction Set Descriptions5-236 SWPU068E

Modify Auxiliary or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] mar(TAx = D16) No 4 1 AD

Opcode 0111 0111 DDDD DDDD DDDD DDDD FDDD xxxx

Operands TAx, D16

Description This instruction performs, in the A-unit address generation units, a load in the
auxiliary or temporary registers TAx of the absolute data address signed
constant D16. The operation is performed in the address phase of the pipeline;
however, data memory is not accessed.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

mar(T1 = #FFFFh) The address FFFFh is copied to T1.

 Modify Auxiliary or Temporary Register Content by Addition (mar) AADD

5-237Instruction Set DescriptionsSWPU068E

Modify Auxiliary or Temporary Register Content by AdditionAADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy + TAx) No 3 1 AD

[2] mar(TAx + P8) No 3 1 AD

Description These instructions perform, in the A-unit address generation units:

� an addition between two auxiliary or temporary registers, TAx and TAy,
and stores the result in TAy

� an addition between the auxiliary or temporary registers TAx and a
program address defined by a program address label assembled into
unsigned P8, and stores the result in TAx

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Status Bits Affected by ST2_55

Affects none

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Auxiliary or Temporary Register Content

� Modify Auxiliary or Temporary Register Content by Subtraction

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Addition

� Modify Extended Auxiliary Register Content by Subtraction

AADD Modify Auxiliary or Temporary Register Content by Addition (mar)

Instruction Set Descriptions5-238 SWPU068E

Modify Auxiliary or Temporary Register Content by Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy + TAx) No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0000

0001 010E FSSS xxxx FDDD 1000

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, an addition
between two auxiliary or temporary registers, TAy and TAx, and stores the
result in TAy. The content of TAx is considered signed. The operation is
performed in the address phase of the pipeline; however, data memory is not
accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the mar() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

 Modify Auxiliary or Temporary Register Content by Addition (mar) AADD

5-239Instruction Set DescriptionsSWPU068E

Example 1

Syntax Description

mar(AR0 + T0) The content of AR0 is added to the signed content of T0 and the result is stored in AR0.

Before After

XAR0 01 0000 XAR0 00 8000

T0 8000 T0 8000

Example 2

Syntax Description

mar(T0 + T1) The content of T0 is added to the content of T1 and the result is stored in T0.

AADD Modify Auxiliary or Temporary Register Content by Addition (mar)

Instruction Set Descriptions5-240 SWPU068E

Modify Auxiliary or Temporary Register Content by Addition

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] mar(TAx + P8) No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0100

0001 010E PPPP PPPP FDDD 1100

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, an addition
between the auxiliary or temporary register TAx and a program address
defined by a program address label assembled into unsigned P8, and stores
the result in TAx. The operation is performed in the address phase of the
pipeline; however, data memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the mar() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

mar(T0 + #255) The unsigned 8-bit value (255) is added to the content of T0 and the result is
stored in T0.

 Modify Auxiliary or Temporary Register Content by Subtraction (mar) ASUB

5-241Instruction Set DescriptionsSWPU068E

Modify Auxiliary or Temporary Register Content by SubtractionASUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy – TAx) No 3 1 AD

[2] mar(TAx – P8) No 3 1 AD

Description These instructions perform, in the A-unit address generation units:

� a subtraction between two auxiliary or temporary registers, TAy and TAx,
and stores the result in TAy

� a subtraction between the auxiliary or temporary registers TAx and a
program address defined by a program address label assembled into
unsigned P8, and stores the result in TAx

The operation is performed in the address phase of the pipeline, however data
memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Status Bits Affected by ST2_55

Affects none

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Auxiliary or Temporary Register Content

� Modify Auxiliary or Temporary Register Content by Addition

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Addition

� Modify Extended Auxiliary Register Content by Subtraction

ASUB Modify Auxiliary or Temporary Register Content by Subtraction (mar)

Instruction Set Descriptions5-242 SWPU068E

Modify Auxiliary or Temporary Register Content by Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(TAy – TAx) No 3 1 AD

Opcode 0001 010E FSSS xxxx FDDD 0010

0001 010E FSSS xxxx FDDD 1010

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, TAy

Description This instruction performs, in the A-unit address generation units, a subtraction
between two auxiliary or temporary registers, TAy and TAx, and stores the
result in TAy. The content of TAx is considered signed. The operation is
performed in the address phase of the pipeline; however, data memory is not
accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the mar() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

 Modify Auxiliary or Temporary Register Content by Subtraction (mar) ASUB

5-243Instruction Set DescriptionsSWPU068E

Example 1

Syntax Description

mar(AR0 – T0) The signed content of T0 is subtracted from the content of AR0 and the result is stored in
AR0.

Before After

XAR0 01 8000 XAR0 01 0000

T0 8000 T0 8000

Example 2

Syntax Description

mar(T0 – T1) The content of T1 is subtracted from the content of T0 and the result is stored in T0.

ASUB Modify Auxiliary or Temporary Register Content by Subtraction (mar)

Instruction Set Descriptions5-244 SWPU068E

Modify Auxiliary or Temporary Register Content by Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] mar(TAx – P8) No 3 1 AD

Opcode 0001 010E PPPP PPPP FDDD 0110

0001 010E PPPP PPPP FDDD 1110

The assembler selects the opcode depending on the instruction position in a
paralleled pair.

Operands TAx, P8

Description This instruction performs, in the A-unit address generation units, a subtraction
between the auxiliary or temporary register TAx and a program address
defined by a program address label assembled into unsigned P8, and stores
the result in TAx. The operation is performed in the address phase of the
pipeline; however, data memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is in paralleled, the circular buffer management controls the result
stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

In the translated code section, the mar() instruction must be executed with
C54CM set to 1.

When circular modification is selected for the destination auxiliary register, this
instruction modifies the selected destination auxiliary register by using BK03
as the circular buffer size register; BK47 is not used.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

mar(AR0 – #255) The unsigned 8-bit value (255) is subtracted from the signed content of AR0 and
the result is stored in AR0.

 Modify Data Stack Pointer AADD

5-245Instruction Set DescriptionsSWPU068E

Modify Data Stack PointerAADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] SP = SP + K8 Yes 2 1 AD

Opcode 0100 111E KKKK KKKK

Operands K8

Description This instruction performs an addition in the A-unit data-address generation
unit (DAGEN) in the address phase of the pipeline. The 8-bit signed constant,
K8, is sign extended to 16 bits and added to the data stack pointer (SP). When
in 32-bit stack configuration, the system stack pointer (SSP) is also modified.
Updates of the SP and SSP (depending on the stack configuration) should not
be executed in parallel with this instruction.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

SP = SP + #127 The 8-bit value (127) is sign extended to 16 bits and added to the stack pointer (SP).

AMAR Modify Extended Auxiliary Register Content (mar)

Instruction Set Descriptions5-246 SWPU068E

Modify Extended Auxiliary Register ContentAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XAdst = mar(Smem) No 3 1 AD

[2] mar(XACdst = XACsrc) Yes 3 1 AD

Description These instructions perform, in the A-unit address generation units:

� The effective address specified by the Smem operand field and modifies
the 23-bit destination register (XARx, XSP, XSSP, XDP, or XCDP). Data
memory is not accessed.

� A full 23-bit move from one addressing register to another addressing
register, from XACsrc to XACdst, and stores the result in XACdst. The
operation is performed in the address phase of the pipeline; however, data
memory is not accessed.

Status Bits Affected by ST2_55

Affects none

See Also See the following other related instructions:

� Load Extended Auxiliary Register from Memory

� Load Extended Auxiliary Register with Immediate Value

� Modify Auxiliary Register Content

� Move Extended Auxiliary Register Content

� Store Extended Auxiliary Register Content to Memory

� Modify Extended Auxiliary Register Content by Addition

� Modify Extended Auxiliary Register Content by Subtraction

 Modify Extended Auxiliary Register Content (mar) AMAR

5-247Instruction Set DescriptionsSWPU068E

Modify Extended Auxiliary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] XAdst = mar(Smem) No 3 1 AD

Opcode 1110 1100 AAAA AAAI XDDD 1110

Operands Smem, XAdst

Description This instruction computes the effective address specified by the Smem
operand field and modifies the 23-bit destination register (XARx, XSP, XSSP,
XDP, or XCDP). This operation is completed in the address phase of the
pipeline by the A-unit address generator. Data memory is not accessed.

The premodification or postmodification of the auxiliary register (ARx), the use
of *port(#K), and the use of the readport() or writeport() qualifier is not
supported for this instruction. The use of auxiliary register offset operations is
supported. If the corresponding bit (ARnLC) in status register ST2_55 is set
to 1, the circular buffer management also controls the result stored in XAdst.

Status Bits Affected by ST2_55

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

XAR0 = mar(*AR1) The content of AR1 is loaded into XAR0.

AMAR Modify Extended Auxiliary Register Content (mar)

Instruction Set Descriptions5-248 SWPU068E

Modify Extended Auxiliary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] mar(XACdst = XACsrc) Yes 3 1 AD

Opcode DAG_X: 0001 010E XACS 0001 XACD 0001

DAG_Y: 0001 010E XACS 0001 XACD 1001

Operands XARx, XARy, XCDP

Description This instruction performs, in the A-unit address generation units, a full 23-bit
move from one addressing register to another addressing register, from
XACsrc to XACdst, and stores the result in XACdst. The operation is
performed in the address phase of the pipeline; however, data memory is not
accessed.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by

Affects

Repeat This instruction can be repeated.

Example 1

Syntax Description

mar(XAR1 = XAR0) The content of XAR0 is copied to XAR1.

Before After

XAR0 12 3456 XAR0 12 3456

XAR1 43 5634 XAR1 12 3456

Example 2

Syntax Description

mar(XCDP = XAR7) The content of XAR7 is copied to XCDP.

Before After

XCDP 00 8000 XCDP 01 4000

XAR7 01 4000 XAR7 01 4000

Execution

(XACsrc) −> XACdst

 Modify Extended Auxiliary Register Content by Addition (mar) mnemonic

5-249Instruction Set DescriptionsSWPU068E

Modify Extended Auxiliary Register Content by AdditionAADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(XACdst + XACsrc) Yes 3 1 AD

Opcode DAG_X: 0001 010E XACS 0001 XACD 0000

DAG_Y: 0001 010E XACS 0001 XACD 1000

Operands XARx, XARy, XCDP

Description This instruction performs, in the A-unit address generation units, a full 23-bit
unsigned addition between two auxiliary or other addressing registers,
XACdst and XACsrc, and stores the result in XACdst. The operation is
performed in the address phase of the pipeline; however, data memory is not
accessed.

Since the operation performed is an unsigned operation, if a destination
register is an auxiliary register, it is not allowed to use the circular addressing
mode; that is, the result of setting the corresponding bit (ARnLC) in status
register ST2_55 to 1 is undefined and using the circular addressing qualifier
operating in parallel is not allowed.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by

Affects

Repeat This instruction can be repeated.

AADD Modify Extended Auxiliary Register Content by Addition (mar)

Instruction Set Descriptions5-250 SWPU068E

See Also See the following other related instructions:

� Modify Auxiliary or Temporary Register Content

� Modify Auxiliary or Temporary Register Content by Addition

� Modify Auxiliary or Temporary Register Content by Subtraction

� Modify Auxiliary Register Content with Parallel Multiply

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Subtraction

� Parallel Modify Auxiliary Register Contents

Example 1

Syntax Description

mar(XAR1 + XAR0) The content of XAR0 is added to XAR1 and stored in XAR1.

Before After

XAR0 12 3456 XAR0 12 3456

XAR1 43 5634 XAR1 55 8A8A

Example 2

Syntax Description

mar(XCDP + XAR7) The content of XAR7 is added to XCDP and stored in XCDP.

Before After

XCDP 00 8000 XCDP 01 0080

XAR7 00 8080 XAR7 00 8080

Execution

(XACdst) + (XACsrc) −> XACdst

 Modify Extended Auxiliary Register Content by Subtraction (mar) mnemonic

5-251Instruction Set DescriptionsSWPU068E

Modify Extended Auxiliary Register Content by SubtractionASUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(XACdst − XACsrc) Yes 3 1 AD

Opcode DAG_X: 0001 010E XACS 0001 XACD 0010

DAG_Y: 0001 010E XACS 0001 XACD 1010

Operands XARx, XARy, XCDP

Description This instruction performs, in the A-unit address generation units, a full 23-bit
subtraction between two auxiliary or other addressing registers, XACdst and
XACsrc, and stores the result in XACdst. The operation is performed in the
address phase of the pipeline; however, data memory is not accessed.

If the destination register is an auxiliary register and the corresponding bit
(ARnLC) in status register ST2_55 is set to 1 or the circular addressing
qualifier is operating in parallel, the circular buffer management does not
control the result stored in the destination register.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by

Affects

Repeat This instruction can be repeated.

ASUB Modify Extended Auxiliary Register Content by Subtraction (mar)

Instruction Set Descriptions5-252 SWPU068E

See Also See the following other related instructions:

� Modify Auxiliary or Temporary Register Content

� Modify Auxiliary or Temporary Register Content by Addition

� Modify Auxiliary or Temporary Register Content by Subtraction

� Modify Auxiliary Register Content with Parallel Multiply

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Modify Extended Auxiliary Register Content

� Modify Extended Auxiliary Register Content by Addition

� Parallel Modify Auxiliary Register Contents

Example 1

Syntax Description

mar(XAR1 − XAR0) The content of XAR0 is subtracted from XAR1 and stored in XAR1.

Before After

XAR0 12 3456 XAR0 12 3456

XAR1 43 5634 XAR1 31 21DE

Example 2

Syntax Description

mar(XCDP − XAR7) The content of XAR7 is subtracted from XCDP and stored in XCDP.

Before After

XCDP 00 8000 XCDP 00 7000

XAR7 00 1000 XAR7 00 1000

Execution

(XACdst) − (XACsrc) −> XACdst

 Move Accumulator Content to Auxiliary or Temporary Register MOV

5-253Instruction Set DescriptionsSWPU068E

Move Accumulator Content to Auxiliary or Temporary RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TAx = HI(ACx) Yes 2 1 X

Opcode 0100 010E 00SS FDDD

Operands ACx, TAx

Description This instruction moves the high part of the accumulator, ACx(31−16), to the
destination auxiliary or temporary register (TAx). The 16-bit move operation
is performed in the A-unit ALU.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Move Accumulator, Auxiliary, or Temporary Register Content

� Move Auxiliary or Temporary Register Content to Accumulator

Example

Syntax Description

AR2 = HI(AC0) The content of AC0(31–16) is copied to AR2.

Before After

AC0 01 E500 0030 AC0 01 E500 0030

AR2 0200 AR2 E500

MOV Move Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-254 SWPU068E

Move Accumulator, Auxiliary, or Temporary Register ContentMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = src Yes 2 1 X

Opcode 0010 001E FSSS FDDD

Operands dst, src

Description This instruction moves the content of the source (src) register to the
destination (dst) register:

� When the destination (dst) register is an accumulator:

� The 40-bit move operation is performed in the D-unit ALU.

� During the 40-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVx) is set.

� the destination register (ACx) is saturated according to SATD.

� If the source (src) register is an auxiliary or temporary register, the
16 LSBs of the source register are sign extended to 40 bits according
to SXMD.

� When the destination (dst) register is an auxiliary or temporary register:

� The 16-bit move operation is performed in the A-unit ALU.

� If the source (src) register is an accumulator, the 16 LSBs of the
accumulator are used to perform the operation.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Move Accumulator Content to Auxiliary or Temporary Register

� Move Auxiliary or Temporary Register Content to Accumulator

� Move Auxiliary or Temporary Register Content to CPU Register

� Move Extended Auxiliary Register Content

 Move Accumulator, Auxiliary, or Temporary Register Content MOV

5-255Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC1 = AC0 The content of AC0 is copied to AC1. Because an overflow occurred, ACOV1 is set to 1.

Before After

AC0 01 E500 0030 AC0 01 E500 0030

AC1 00 2800 0200 AC1 01 E500 0030

M40 0 M40 0

SATD 0 SATD 0

ACOV1 0 ACOV1 1

MOV Move Auxiliary or Temporary Register Content to Accumulator

Instruction Set Descriptions5-256 SWPU068E

Move Auxiliary or Temporary Register Content to AccumulatorMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] HI(ACx) = TAx Yes 2 1 X

Opcode 0101 001E FSSS 00DD

Operands ACx, TAx

Description This instruction moves the content of the auxiliary or temporary register (TAx)
to the high part of the accumulator, ACx(31−16):

� The 16-bit move operation is performed in the D-unit ALU.

� During the 16-bit move operation, an overflow is detected according to
M40:

� the destination accumulator overflow status bit (ACOVx) is set.

� the destination register (ACx) is saturated according to SATD.

� If the source (src) register is an auxiliary or temporary register, the
16 LSBs of the source register are sign extended to 40 bits according to
SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Move Accumulator Content to Auxiliary or Temporary Register

� Move Accumulator, Auxiliary, or Temporary Register Content

� Move Auxiliary or Temporary Register Content to CPU Register

� Move Extended Auxiliary Register Content

Example

Syntax Description

HI(AC0) = T0 The content of T0 is copied to AC0(31–16).

 Move Auxiliary or Temporary Register Content to CPU Register MOV

5-257Instruction Set DescriptionsSWPU068E

Move Auxiliary or Temporary Register Content to CPU RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] BRC0 = TAx Yes 2 1 X

[2] BRC1 = TAx Yes 2 1 X

[3] CDP = TAx Yes 2 1 X

[4] CSR = TAx Yes 2 1 X

[5] SP = TAx Yes 2 1 X

[6] SSP = TAx Yes 2 1 X

Opcode See Table 5−3 (page 5-258).

Operands TAx

Description This instruction moves the content of the auxiliary or temporary register (TAx)
to the selected CPU register. All the move operations are performed in the
execute phase of the pipeline and the A-unit ALU is used to transfer the content
of the registers.

There is a 3-cycle latency between SP, SSP, CDP, TAx, CSR, and BRCx
update and their use in the address phase by the A-unit address generator
units or by the P-unit loop control management.

For instruction [2] when BRC1 is loaded with the content of TAx, the block
repeat save register (BRS1) is also loaded with the same value.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Move Accumulator Content to Auxiliary or Temporary Register

� Move Accumulator, Auxiliary, or Temporary Register Content

� Move Auxiliary or Temporary Register Content to Accumulator

� Move CPU Register Content to Auxiliary or Temporary Register

� Move Extended Auxiliary Register Content

MOV Move Auxiliary or Temporary Register Content to CPU Register

Instruction Set Descriptions5-258 SWPU068E

Example

Syntax Description

BRC1 = T1 The content of T1 is copied to the block repeat register (BRC1) and to the block
repeat save register (BRS1).

Before After

T1 0034 T1 0034

BRC1 00EA BRC1 0034

BRS1 00EA BRS1 0034

Table 5−3. Opcodes for Move Auxiliary or Temporary Register Content to CPU Register
Instruction

No. Syntax Opcode

[1] BRC0 = TAx 0101 001E FSSS 1110

[2] BRC1 = TAx 0101 001E FSSS 1101

[3] CDP = TAx 0101 001E FSSS 1010

[4] CSR = TAx 0101 001E FSSS 1100

[5] SP = TAx 0101 001E FSSS 1000

[6] SSP = TAx 0101 001E FSSS 1001

 Move CPU Register Content to Auxiliary or Temporary Register MOV

5-259Instruction Set DescriptionsSWPU068E

Move CPU Register Content to Auxiliary or Temporary RegisterMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TAx = BRC0 Yes 2 1 X

[2] TAx = BRC1 Yes 2 1 X

[3] TAx = CDP Yes 2 1 X

[4] TAx = SP Yes 2 1 X

[5] TAx = SSP Yes 2 1 X

[6] TAx = RPTC Yes 2 1 X

Opcode See Table 5−4 (page 5-260).

Operands TAx

Description This instruction moves the content of the selected CPU register to the auxiliary
or temporary register (TAx). All the move operations are performed in the
execute phase of the pipeline and the A-unit ALU is used to transfer the content
of the registers.

For instructions [1] and [2], BRCx is decremented in the address phase of the
last instruction of a loop. These instructions have a 3-cycle latency
requirement versus the last instruction of a loop.

For instructions [3], [4], and [5], there is a 3-cycle latency between SP, SSP,
CDP, and TAx update and their use in the address phase by the A-unit address
generator units or by the P-unit loop control management.

Status Bits Affected by none

Affects none

Repeat Instruction [6] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� Move Accumulator Content to Auxiliary or Temporary Register

� Move Auxiliary or Temporary Register Content to CPU Register

� Store CPU Register Content to Memory

MOV Move CPU Register Content to Auxiliary or Temporary Register

Instruction Set Descriptions5-260 SWPU068E

Example

Syntax Description

T1 = BRC1 The content of block repeat register (BRC1) is copied to T1.

Before After

T1 0034 T1 00EA

BRC1 00EA BRC1 00EA

Table 5−4. Opcodes for Move CPU Register Content to Auxiliary or Temporary Register
Instruction

No. Syntax Opcode

[1] TAx = BRC0 0100 010E 1100 FDDD

[2] TAx = BRC1 0100 010E 1101 FDDD

[3] TAx = CDP 0100 010E 1010 FDDD

[4] TAx = SP 0100 010E 1000 FDDD

[5] TAx = SSP 0100 010E 1001 FDDD

[6] TAx = RPTC 0100 010E 1110 FDDD

 Move Extended Auxiliary Register Content MOV

5-261Instruction Set DescriptionsSWPU068E

Move Extended Auxiliary Register ContentMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] xdst = xsrc No 2 1 X

Opcode 1001 0000 XSSS XDDD

Operands xdst, xsrc

Description This instruction moves the content of the source register (xsrc) to the
destination register (xdst):

� When the destination register (xdst) is an accumulator (ACx) and the
source register (xsrc) is a 23-bit register (XARx, XSP, XSSP, XDP, or
XCDP):

� The 23-bit move operation is performed in the D-unit ALU.

� The upper bits of ACx are filled with 0.

� When the source register (xsrc) is an accumulator (ACx) and the
destination register (xdst) is a 23-bit register (XARx, XSP, XSSP, XDP, or
XCDP):

� The 23-bit move operation is performed in the A-unit ALU.

� The lower 23 bits of ACx are loaded into xdst.

� When both the source register (xsrc) and the destination register (xdst) are
accumulators, the Move Accumulator Content instruction (dst = src) is
assembled.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Extended Auxiliary Register from Memory

� Load Extended Auxiliary Register with Immediate Value

� Modify Extended Auxiliary Register Content

� Store Extended Auxiliary Register Content to Memory

Example

Syntax Description

XAR1 = AC0 The lower 23 bits of AC0 are loaded into XAR1.

MOV Move Memory to Memory

Instruction Set Descriptions5-262 SWPU068E

Move Memory to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = coef(Cmem) No 3 1 X

[2] coef(Cmem) = Smem No 3 1 X

[3] Lmem = dbl(coef(Cmem)) No 3 1 X

[4] dbl(coef(Cmem)) = Lmem No 3 1 X

[5] dbl(Ymem) = dbl(Xmem) No 3 1 X

[6] Ymem = Xmem No 3 1 X

Description These instructions store the content of a memory location to a memory
location. They use a dedicated datapath to perform the operation.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Store Accumulator Content to Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

� Store Auxiliary or Temporary Register Pair Content to Memory

� Store CPU Register Content to Memory

� Store Extended Auxiliary Register Content to Memory

 Move Memory to Memory MOV

5-263Instruction Set DescriptionsSWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = coef(Cmem) No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 00mm

Operands Cmem, Smem

Description This instruction stores the content of a data memory operand Cmem,
addressed using the coefficient addressing mode, to a memory (Smem)
location.

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*(#0500h) = coef(*CDP) The content addressed by the coefficient data pointer register (CDP) is copied to
address 0500h.

Before After

*CDP 3400 *CDP 3400

500 0000 500 3400

MOV Move Memory to Memory

Instruction Set Descriptions5-264 SWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] coef(Cmem) = Smem No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 01mm

Operands Cmem, Smem

Description This instruction stores the content of a memory (Smem) location to a data
memory (Cmem) location addressed using the coefficient addressing mode.

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

coef(*CDP) = *AR3 The content addressed by AR3 is copied in the location addressed by the coefficient
data pointer register (CDP).

 Move Memory to Memory MOV

5-265Instruction Set DescriptionsSWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] Lmem = dbl(coef(Cmem)) No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 10mm

Operands Cmem, Lmem

Description This instruction stores the content of two consecutive data memory (Cmem)
locations, addressed using the coefficient addressing mode, to two
consecutive data memory (Lmem) locations.

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AR1 = dbl(coef((CDP + T0))) The content (long word) addressed by the coefficient data pointer register
(CDP) and CDP + 1 is copied in the location addressed by AR1 and AR1 + 1,
respectively. After the memory store, CDP is incremented by the content of
T0 (5).

Before After

T0 0005 T0 0005

CDP 0200 CDP 0205

AR1 0300 AR1 0300

200 3400 200 3400

201 0FD3 201 0FD3

300 0000 300 3400

301 0000 301 0FD3

MOV Move Memory to Memory

Instruction Set Descriptions5-266 SWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dbl(coef(Cmem)) = Lmem No 3 1 X

Opcode 1110 1111 AAAA AAAI xxxx 11mm

Operands Cmem, Lmem

Description This instruction stores the content of two consecutive data memory (Lmem)
locations to two consecutive data memory (Cmem) locations addressed using
the coefficient addressing mode.

For this instruction, the Cmem operand is not accessed through the BB bus.
On all C55x-based devices, the Cmem operand may be mapped in external
or internal memory space.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

dbl(coef(*CDP)) = *AR3+ The content (long word) addressed by AR3 and AR3 + 1 is copied in the location
addressed by the coefficient data pointer register (CDP) and CDP + 1,
respectively. Because this instruction is a long-operand instruction, AR3 is
incremented by 2 after the execution.

 Move Memory to Memory MOV

5-267Instruction Set DescriptionsSWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] dbl(Ymem) = dbl(Xmem) No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 00xx

Operands Xmem, Ymem

Description This instruction stores the content of two consecutive data memory (Xmem)
locations, addressed using the dual addressing mode, to two consecutive data
memory (Ymem) locations.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

dbl(*AR1) = dbl(*AR0) The content addressed by AR0 is copied in the location addressed by AR1 and the
content addressed by AR0 + 1 is copied in the location addressed by AR1 + 1.

Before After

AR0 0300 AR0 0300

AR1 0400 AR1 0400

300 3400 300 3400

301 0FD3 301 0FD3

400 0000 400 3400

401 0000 401 0FD3

MOV Move Memory to Memory

Instruction Set Descriptions5-268 SWPU068E

Move Memory to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] Ymem = Xmem No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 01xx

Operands Xmem, Ymem

Description This instruction stores the content of data memory (Xmem) location,
addressed using the dual addressing mode, to data memory (Ymem) location.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = *AR5 The content addressed by AR5 is copied in the location addressed by AR3.

 Multiply MPY

5-269Instruction Set DescriptionsSWPU068E

MultiplyMPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy * ACx) Yes 2 1 X

[2] ACy = rnd(ACx * Tx) Yes 2 1 X

[3] ACy = rnd(ACx * K8) Yes 3 1 X

[4] ACy = rnd(ACx * K16) No 4 1 X

[5] ACx = rnd(Smem * coef(Cmem))[, T3 = Smem] No 3 1 X

[6] ACy = rnd(Smem * ACx)[, T3 = Smem] No 3 1 X

[7] ACx = rnd(Smem * K8)[, T3 = Smem] No 4 1 X

[8] ACx = M40(rnd(uns(Xmem) * uns(Ymem)))[, T3 = Xmem] No 4 1 X

[9] ACx = rnd(uns(Tx * Smem))[, T3 = Smem] No 3 1 X

[10] ACx = rnd(Smem * uns(coef(Cmem))) No 3 1 X

Description These instructions perform a multiplication in the D-unit MAC.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Multiply

� Multiply and Subtract

� Multiply and Subtract with Parallel Multiply

� Multiply with Parallel Multiply and Accumulate

� Multiply with Parallel Store Accumulator Content to Memory

� Parallel Multiplies

� Square

MPY Multiply

Instruction Set Descriptions5-270 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy * ACx) Yes 2 1 X

Opcode 0101 010E DDSS 011%

Operands ACx, ACy

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16) and ACy(32−16).

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 * AC0 The product of the content of AC1 and the content of AC0 is stored in AC1.

Before After

AC0 02 6000 3400 AC0 02 6000 3400

AC1 00 C000 0000 AC1 00 4800 0000

M40 1 M40 1

FRCT 0 FRCT 0

ACOV1 0 ACOV1 0

 Multiply MPY

5-271Instruction Set DescriptionsSWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = rnd(ACx * Tx) Yes 2 1 X

Opcode 0101 100E DDSS ss0%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16) and the content of Tx, sign
extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 * T0 The product of the content of AC1 and the content of T0 is stored in AC0.

MPY Multiply

Instruction Set Descriptions5-272 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = rnd(ACx * K8) Yes 3 1 X

Opcode 0001 111E KKKK KKKK SSDD xx0%

Operands ACx, ACy, K8

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16) and the 8-bit signed constant, K8,
sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 * #−2 The product of the content of AC1 and a signed 8-bit value (−2) is stored in AC0.

 Multiply MPY

5-273Instruction Set DescriptionsSWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = rnd(ACx * K16) No 4 1 X

Opcode 0111 1001 KKKK KKKK KKKK KKKK SSDD xx0%

Operands ACx, ACy, K16

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16) and the 16-bit signed constant,
K16, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 * #−64 The product of the content of AC1 and a signed 16-bit value (−64) is stored in AC0.

MPY Multiply

Instruction Set Descriptions5-274 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACx = rnd(Smem * coef(Cmem))[, T3 = Smem] No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 00mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory location (Smem), sign
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Multiply MPY

5-275Instruction Set DescriptionsSWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 * coef(*CDP) The product of the content addressed by AR3 and the content addressed by
the coefficient data pointer register (CDP) is stored in AC0.

MPY Multiply

Instruction Set Descriptions5-276 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = rnd(Smem * ACx) [,T3 = Smem] No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD 00SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16) and the content of a memory
location (Smem), sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 * AC1 The product of the content addressed by AR3 and the content of AC1 is stored in
AC0.

 Multiply MPY

5-277Instruction Set DescriptionsSWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACx = rnd(Smem * K8) [,T3 = Smem] No 4 1 X

Opcode 1111 1000 AAAA AAAI KKKK KKKK xxDD x0U%

Operands ACx, K8, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory location (Smem), sign
extended to 17 bits, and the 8-bit signed constant, K8, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 * #−2 The product of the content addressed by AR3 and a signed 8-bit value (−2) is stored
in AC0.

MPY Multiply

Instruction Set Descriptions5-278 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ACx = M40(rnd(uns(Xmem) * uns(Ymem)))[, T3 = Xmem] No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM xxDD 000g uuU%

Operands ACx, Xmem, Ymem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of data memory operand Ymem,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

 Multiply MPY

5-279Instruction Set DescriptionsSWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(*AR3) * uns(*AR4) The product of the unsigned content addressed by AR3 and the unsigned
content addressed by AR4 is stored in AC0.

MPY Multiply

Instruction Set Descriptions5-280 SWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ACx = rnd(uns(Tx * Smem)) [,T3 = Smem] No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD u1ss

Operands ACx, Smem, Tx

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of Tx, sign extended to 17 bits, and
the content of a memory location (Smem), sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is extended to 40 bits according to uns.

� If the optional uns keyword is applied to the instruction, the 32-bit
result is zero extended to 40 bits.

� If the optional uns keyword is not applied to the instruction, the 32-bit
result is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(T0 * *AR3) The unsigned product of the content addressed by AR3 and the content of T0 is
stored in AC0.

 Multiply MPY

5-281Instruction Set DescriptionsSWPU068E

Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ACx = rnd(Smem * uns(coef(Cmem))) No 3 1 X

Opcode 1101 0000 AAAA AAAI 0%DD 01mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of a data memory location (Smem)
and the content of a data memory operand (Cmem).

Note:

The uns keyword is mandatory for this instruction.

The data memory operand Smem is addressed by DAGEN path X by using
the Smem addressing mode, driven on data bus DDB, and sign extended to
17 bits in the MAC1. The other data memory operand Cmem is addressed by
DAGEN path C by using the coefficient addressing mode, driven on data bus
BDB, and sign extended to 17 bits with filling zeros in the MAC1.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

MPY Multiply

Instruction Set Descriptions5-282 SWPU068E

This instruction can be applied to compute the intermediate multiplication
result of a double precision multiplication and to free up one DAGEN operator
(DAGEN path Y) for storing an instruction with enabling parallelism.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3− * uns(coef(*CDP+)) The product of the content addressed by AR3 and the unsigned content
addressed by the coefficient data pointer register (CDP) is stored in AC0.
AR3 is decremented by 1 and CDP is incremented by 1.

Execution

rnd((Smem)[16:0]*uns(Cmem)[16:0]) −> ACx

Before After

AC0 FF 8000 0000 AC0 FF FF00 0000

XAR3 00 1001 XAR3 00 1000

Data memory

1001h FE00 1001h FE00

XCDP 00 2000 XCDP 00 2000

Coeff memory

2000h 8000 2000h 8000

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-283Instruction Set DescriptionsSWPU068E

Multiply with Parallel Multiply and AccumulateMPY::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles
Pipe-
line

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

No 4 1 X

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 1 X

Description These instructions perform two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC). The operations are executed in the two D-unit
MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Multiply

� Multiply and Accumulate

� Parallel Multiply and Accumulates

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-284 SWPU068E

Multiply With Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

 Multiply with Parallel Multiply and Accumulate MAC::MPY

5-285Instruction Set DescriptionsSWPU068E

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(*AR3) * uns(coef(*CDP)),
AC1 = (AC1 >> #16) + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by AR3
and the unsigned content addressed by the
coefficient data pointer register (CDP) is stored in
AC0. The product of the unsigned content addressed
by AR4 and the unsigned content addressed by CDP
is added to the content of AC1, which has been shifted
to the right by 16 bits. The result is stored in AC1.

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-286 SWPU068E

Multiply with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0000 01mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand HI(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC2 (this data is shared to MAC1 and MAC2). The other data memory
operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand Smem and the content of data memory operand
LO(coef(Cmem)). The data memory operand Smem is addressed by DAGEN
path X with the corresponding addressing mode, driven on data bus DDB, and
sign extended to 17 bits in the MAC1. The other data memory operand
LO(coef(Cmem)) is addressed by DAGEN path C with the next address of EA
(EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-287Instruction Set DescriptionsSWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = AC0 + (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is stored in AC1.
The product of the unsigned content addressed by
AR3 and the unsigned content addressed by the lower
part of the CDP is added to the content of AC0. The
result is stored in AC0. AR3 is decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

Execution

M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-288 SWPU068E

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F00 0000

Coeff memory

2000h 8000 2000h 8000

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-289Instruction Set DescriptionsSWPU068E

Multiply with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles
Pipe-
line

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0100 01mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand HI(Lmem)
and the content of data memory operand HI(coef(Cmem)). The data memory
operand HI(Lmem) is addressed by DAGEN path X with the EA (effective
address); the data, which can be assumed to be the higher part of long word
memory data, is driven on data bus CDB and sign extended to 17 bits in the
MAC2. The other data memory operand HI(coef(Cmem)) is addressed by
DAGEN path C with the EA; the data, which can be assumed to be the higher
part of long word coefficient data, is driven on data bus B2DB and sign
extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-290 SWPU068E

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(HI(*AR3−)) * uns(HI(coef(*CDP+))),
AC0 = AC0 + (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is stored in AC1. The prod-
uct of the unsigned content addressed by the low-
er part of AR3 and the unsigned content ad-
dressed by the lower part of the CDP is added to
the content of AC0. The result is stored in AC0.
When AR3− is used with HI/LO, AR3 is decrem-
ented by 2. When CDP+ is used with HI/LO, CDP
is incremented by 2.

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-291Instruction Set DescriptionsSWPU068E

Execution

M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-292 SWPU068E

Multiply With Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) *
uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0010 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and accumulate (MAC). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the contents of data memory operand Ymem,
extended to 17 bits, and the content of data memory operand HI(coef(Cmem))
which is addressed by DAGEN path C with the EA; the data, which can be
assumed to be the higher part of long word coefficient data, is driven on data
bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the contents of data
memory operand Xmem, extended to 17 bits, and the content of data memory
operand LO(coef(Cmem)) which is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply with Parallel Multiply and Accumulate MPY::MAC

5-293Instruction Set DescriptionsSWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = AC0 + (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is stored in AC1.
The product of the unsigned content addressed by
AR2 and the unsigned content addressed by the lower
part of the CDP is added to the content of AC0. The
result is stored in AC0. AR3 and AR2 are decremented
by 1. When CDP+ is used with HI/LO, CDP is increm-
ented by 2.

Execution

M40(rnd(ACx + uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

MPY::MAC Multiply with Parallel Multiply and Accumulate

Instruction Set Descriptions5-294 SWPU068E

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply With Parallel Multiply and Subtract mnemonic

5-295Instruction Set DescriptionsSWPU068E

Multiply With Parallel Multiply and SubtractMPY::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles
Pipe-
line

[1] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

No 4 1 X

[2] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[3] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 1 X

Description These instructions perform two parallel operations in one cycle: multiply, and
multiply and subtract (MAS). The operations are executed in the two D-unit
MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Multiply

� Multiply and Subtract

� Parallel Multiply and Subtract

MPY::MAS Multiply With Parallel Multiply and Subtract

Instruction Set Descriptions5-296 SWPU068E

Multiply with Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0000 11mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and subtract (MAS). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand HI(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC2 (this data is shared to MAC1 and MAC2). The other data memory
operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand LO(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC1. The other data memory operand LO(coef(Cmem)) is
addressed by DAGEN path C with the next address of EA (EA+1 when EA is
even, EA−1 when EA is odd); the data, which can be assumed to be the lower
part of long word coefficient data, is driven on data bus BDB and sign extended
to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply With Parallel Multiply and Subtract MPY::MAS

5-297Instruction Set DescriptionsSWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = AC0 − (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The product
of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is stored in AC1.
The product of the unsigned content addressed by AR3
and the unsigned content addressed by the lower part
of the CDP is subtracted from the content of AC0. The
result is stored in AC0. AR3 is decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

Execution

M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MPY::MAS Multiply With Parallel Multiply and Subtract

Instruction Set Descriptions5-298 SWPU068E

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F00 0000

Coeff memory

2000h 8000 2000h 8000

 Multiply With Parallel Multiply and Subtract MPY::MAS

5-299Instruction Set DescriptionsSWPU068E

Multiply with Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles
Pipe-
line

[2] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0100 11mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and subtract (MAS). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand HI(Lmem)
and the content of data memory operand HI(coef(Cmem)). The data memory
operand HI(Lmem) is addressed by DAGEN path X with the EA (effective
address); the data, which can be assumed to be the higher part of long word
memory data, is driven on data bus CDB and sign extended to 17 bits in the
MAC2. The other data memory operand HI(coef(Cmem)) is addressed by
DAGEN path C with the EA; the data, which can be assumed to be the higher
part of long word coefficient data, is driven on data bus B2DB and sign
extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

MPY::MAS Multiply With Parallel Multiply and Subtract

Instruction Set Descriptions5-300 SWPU068E

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(HI(*AR3−)) * uns(HI(coef(*CDP+))),
AC0 = AC0 − (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is stored in AC1. The prod-
uct of the unsigned content addressed by the low-
er part of AR3 and the unsigned content ad-
dressed by the lower part of the CDP is sub-
tracted from the content of AC0. The result is
stored in AC0. When AR3− is used with HI/LO,
AR3 is decremented by 2. When CDP+ is used
with HI/LO, CDP is incremented by 2.

 Multiply With Parallel Multiply and Subtract MPY::MAS

5-301Instruction Set DescriptionsSWPU068E

Execution

M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MPY::MAS Multiply With Parallel Multiply and Subtract

Instruction Set Descriptions5-302 SWPU068E

Multiply with Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) *
uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0010 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply, and
multiply and subtract (MAS). The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the contents of data memory operand Ymem,
extended to 17 bits, and the contents of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the contents of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC 1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply with Parallel Multiply and Subtract MPY::MAS

5-303Instruction Set DescriptionsSWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 key word is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = AC0 − (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The product
of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is stored in AC1.
The product of the unsigned content addressed by
AR2 and the unsigned content addressed by the lower
part of the CDP is subtracted from the content of AC0.
The result is stored in AC0. AR3 and AR2 are decrem-
ented by 1. When CDP+ is used with HI/LO, CDP is
incremented by 2.

Execution

M40(rnd(ACx − uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

MPY::MAS Multiply with Parallel Multiply and Subtract

Instruction Set Descriptions5-304 SWPU068E

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply with Parallel Store Accumulator Content to Memory MPYM::MOV

5-305Instruction Set DescriptionsSWPU068E

Multiply with Parallel Store Accumulator Content to MemoryMPYM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(Tx * Xmem),
Ymem = HI(ACx << T2) [,T3 = Xmem]

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 000x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and store.

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of Tx, sign extended to 17 bits, and
the content of data memory operand Xmem, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31−16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 determine the

MPYM::MOV Multiply with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-306 SWPU068E

shift quantity. The 6 LSBs of T2 define a shift quantity within –32 to +31. When
the 16-bit value in T2 is between –32 to –17, a modulo 16 operation transforms
the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(Tx * Xmem),
Ymem = HI(saturate(uns(ACx << T2))) [,T3 = Xmem]

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(Tx * Xmem),
Ymem = HI(saturate(ACx << T2)) [,T3 = Xmem]

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SST, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition with Parallel Store Accumulator Content to Memory

� Multiply

� Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Store Accumulator Content to Memory

� Subtraction with Parallel Store Accumulator Content to Memory

Example

Syntax Description

AC1 = rnd(T0 * *AR0+),
*AR1+ = HI(AC0 << T2)

Both instructions are performed in parallel. The content addressed by AR0 is
multiplied by the content of T0. Since FRCT = 1, the result is multiplied by 2,
rounded, and stored in AC1. The content of AC0 is shifted by the content of T2,
and AC0(31−16) is stored at the address of AR1. AR0 and AR1 are both
incremented by 1.

 Multiply with Parallel Store Accumulator Content to Memory MPYM::MOV

5-307Instruction Set DescriptionsSWPU068E

Before After

AC0 FF 8421 1234 AC0 FF 8421 1234

AC1 00 0000 0000 AC1 00 2000 0000

AR0 0200 AR0 0201

AR1 0300 AR1 0301

T0 4000 T0 4000

T2 0004 T2 0004

200 4000 200 4000

300 1111 300 4211

FRCT 1 FRCT 1

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-308 SWPU068E

Multiply and Accumulate (MAC)MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + (ACx * Tx)) Yes 2 1 X

[2] ACy = rnd((ACy * Tx) + ACx) Yes 2 1 X

[3] ACy = rnd(ACx + (Tx * K8)) Yes 3 1 X

[4] ACy = rnd(ACx + (Tx * K16)) No 4 1 X

[5] ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem] No 3 1 X

[6] ACy = rnd(ACy + (Smem * ACx))[, T3 = Smem] No 3 1 X

[7] ACy = rnd(ACx + (Tx * Smem))[, T3 = Smem] No 3 1 X

[8] ACy = rnd(ACx + (Smem * K8))[, T3 = Smem] No 4 1 X

[9] ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

[10] ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

[11] ACx = rnd(ACx + (Smem * uns(coef(Cmem)))) No 3 1 X

Description These instructions perform a multiplication and an accumulation in the D-unit
MAC.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate with Parallel Delay

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Accumulate with Parallel Multiply

� Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

� Multiply and Subtract

 Multiply and Accumulate (MAC) MAC

5-309Instruction Set DescriptionsSWPU068E

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiply and Accumulates

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-310 SWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + (ACx * Tx)) Yes 2 1 X

Opcode 0101 011E DDSS ss0%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32−16) and the content of
Tx, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (AC1 * T0) The product of the content of AC1 and the content of T0 is added to the content of
AC0. The result is stored in AC0.

 Multiply and Accumulate (MAC) MAC

5-311Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = rnd((ACy * Tx) + ACx) Yes 2 1 X

Opcode 0101 100E DDSS ss1%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACy(32−16) and the content of
Tx, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = rnd((AC1 * T1) + AC0) The product of the content of AC1 and the content of T1 is added to the content
of AC0. The result is rounded and stored in AC1.

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-312 SWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = rnd(ACx + (Tx * K8)) Yes 3 1 X

Opcode 0001 111E KKKK KKKK SSDD ss1%

Operands ACx, ACy, K8, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the 8-bit signed constant, K8, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (T0 * K8) The product of the content of T0 and a signed 8-bit value is added to the content of
AC1. The result is stored in AC0.

 Multiply and Accumulate (MAC) MAC

5-313Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = rnd(ACx + (Tx * K16)) No 4 1 X

Opcode 0111 1001 KKKK KKKK KKKK KKKK SSDD ss1%

Operands ACx, ACy, K16, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the 16-bit signed constant, K16, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (T0 * #FFFFh) The product of the content of T0 and a signed 16-bit value (FFFFh) is added
to the content of AC1. The result is stored in AC0.

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-314 SWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem] No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 01mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory location
(Smem), sign extended to 17 bits, and the content of a data memory operand
Cmem, addressed using the coefficient addressing mode and sign extended
to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

 Multiply and Accumulate (MAC) MAC

5-315Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC2 = rnd(AC2 + (*AR1 * coef(*CDP))) The product of the content addressed by AR1 and the content
addressed by the coefficient data pointer register (CDP) is added to
the content of AC2. The result is rounded and stored in AC2. The
result generated an overflow.

Before After

AC2 00 EC00 0000 AC2 00 EC00 0000

AR1 0302 AR2 0302

CDP 0202 CDP 0202

302 FE00 302 FE00

202 0040 202 0040

ACOV2 0 ACOV2 1

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-316 SWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = rnd(ACy + (Smem * ACx))[, T3 = Smem] No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 00SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32−16) and the content of
a memory location (Smem), sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (*AR3 * AC0) The product of the content addressed by AR3 and the content of AC0 is added
to the content of AC1. The result is stored in AC1.

 Multiply and Accumulate (MAC) MAC

5-317Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = rnd(ACx + (Tx * Smem))[, T3 = Smem] No 3 1 X

Opcode 1101 0100 AAAA AAAI U%DD ssSS

Operands ACx, ACy, Smem, Tx

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of a memory location (Smem), sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (T0 * *AR3) The product of the content addressed by AR3 and the content of T0 is added
to the content of AC1. The result is stored in AC0.

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-318 SWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ACy = rnd(ACx + (Smem * K8))[, T3 = Smem] No 4 1 X

Opcode 1111 1000 AAAA AAAI KKKK KKKK SSDD x1U%

Operands ACx, ACy, K8, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory location
(Smem), sign extended to 17 bits, and the 8-bit signed constant, K8, sign
extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (*AR3 * #FFh) The product of the content addressed by AR3 and a signed 8-bit value (FFh)
is added to the content of AC1. The result is stored in AC0.

 Multiply and Accumulate (MAC) MAC

5-319Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 001g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
Ymem, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-320 SWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC3 = rnd(AC3 + (uns(*AR2+) * uns(*AR3+))) The product of the unsigned content addressed by AR2 and
the unsigned content addressed by AR3 is added to the
content of AC3. The result is rounded and stored in AC3. The
result generated an overflow. AR2 and AR3 are both
incremented by 1.

Before After

AC3 00 2300 EC00 AC3 00 9221 0000

AR2 302 AR2 303

AR3 202 AR3 203

ACOV3 0 ACOV3 1

302 FE00 302 FE00

202 7000 202 7000

M40 0 M40 0

SATD 0 SATD 0

FRCT 0 FRCT 0

 Multiply and Accumulate (MAC) MAC

5-321Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 010g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
Ymem, extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx, which has been shifted to the right by
16 bits. The shifting operation is performed with a sign extension of source
accumulator ACx(39).

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-322 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (AC1 >> #16) + (uns(*AR3) * uns(*AR4)) The product of the unsigned content addressed by AR3 and
the unsigned content addressed by AR4 is added to the
content of AC1, which has been shifted to the right by
16 bits. The result is stored in AC0.

 Multiply and Accumulate (MAC) MAC

5-323Instruction Set DescriptionsSWPU068E

Multiply and Accumulate (MAC)

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] ACx = rnd(ACx + (Smem * uns(coef(Cmem)))) No 3 1 X

Opcode 1101 0000 AAAA AAAI 0%DD 10mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC1. The input operands of the multiplier are the content of a data memory
location (Smem) and the content of a data memory operand (Cmem).

Note:

The uns keyword is mandatory for this instruction.

The data memory operand Smem is addressed by DAGEN path X by using
the Smem addressing mode, driven on data bus DDB, and sign extended to
17 bits in the MAC1. The other data memory operand Cmem is addressed by
DAGEN path C by using the coefficient addressing mode, driven on data bus
BDB, and sign extended to 17 bits with filling zeros in the MAC1.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To

MAC Multiply and Accumulate (MAC)

Instruction Set Descriptions5-324 SWPU068E

prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

This instruction can be applied to compute the intermediate multiplication
result and accumulation to the other partial result of double precision
multiplication, and to free up one DAGEN operator (DAGEN path Y) for storing
an instruction with enabling parallelism.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (*AR3− * uns(coef(*CDP+))) The product of the content addressed by AR3 and the content
addressed by the coefficient data pointer register (CDP) is added
to the content of AC0. The result is stored in AC0. AR3 is de-
cremented by 1 and CDP in incremented by 1.

Execution

rnd(ACx+(Smem)[16:0]*uns(Cmem)[16:0]) −> ACx

Before After

AC0 00 0000 8000 AC0 FF FF00 8000

XAR3 00 1001 XAR3 00 1000

Data memory

1001h FE00 1001h FE00

XCDP 00 2000 XCDP 00 2001

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate with Parallel Delay MACMZ

5-325Instruction Set DescriptionsSWPU068E

Multiply and Accumulate with Parallel DelayMACMZ

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem],
delay(Smem)

No 3 1 X

Opcode 1101 0000 AAAA AAAI U%DD xxmm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC in parallel with the delay memory instruction. The input operands of the
multiplier are the content of a memory location (Smem), sign extended to
17 bits, and the content of a data memory operand Cmem, addressed using
the coefficient addressing mode and sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

The soft dual memory addressing mode mechanism cannot be applied to this
instruction. This instruction cannot use the *port(#k16) addressing mode or be
paralleled with the readport() or writeport() operand qualifier.

This instruction cannot be used for accesses to I/O space. Any illegal access
to I/O space generates a hardware bus-error interrupt (BERRINT) to be
handled by the CPU.

MACMZ Multiply and Accumulate with Parallel Delay

Instruction Set Descriptions5-326 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 set to 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Accumulate with Parallel Multiply

� Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiply and Accumulates

Example

Syntax Description

AC0 = AC0 + (*AR3 * coef(*CDP)),
delay(*AR3)

The product of the content addressed by AR3 and the content
addressed by the coefficient data pointer register (CDP) is added to the
content of AC0. The result is stored in AC0. The content addressed by
AR3 is copied into the next higher address.

 Multiply and Accumulate with Parallel Load Accumulator from Memory MACM::MOV

5-327Instruction Set DescriptionsSWPU068E

Multiply and Accumulate with Parallel Load Accumulator from MemoryMACM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = rnd(ACx + (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 101x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and accumulate
(MAC) and load.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVx) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation loads the content of data memory operand Ymem,
which has been shifted to the left by 16 bits, into accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted to the left by 16 bits according to M40.

MACM::MOV Multiply and Accumulate with Parallel Load Accumulator from Memory

Instruction Set Descriptions5-328 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Delay

� Multiply and Accumulate with Parallel Multiply

� Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiply and Accumulates

Example

Syntax Description

AC0 = AC0 + (T0 * *AR3),
AC1 = *AR4 << #16

Both instructions are performed in parallel. The product of the content addressed
by AR3 and the content of T0 is added to the content of AC0. The result is stored
in AC0. The content addressed by AR4, which has been shifted to the left by
16 bits, is stored in AC1.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-329Instruction Set DescriptionsSWPU068E

Multiply and Accumulate with Parallel MultiplyMAC::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

[2] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

[3] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

[4] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

[5] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 1 X

Description These instructions perform two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Delay

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Accumulate with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Multiply

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiply and Accumulates

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-330 SWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, sign extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

This second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-331Instruction Set DescriptionsSWPU068E

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (uns(*AR3) * uns(coef(*CDP))),
AC1 = uns(*AR4) * uns(coef(*CDP))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned
content addressed by the coefficient data pointer register
(CDP) is added to the content of AC0. The result is stored in
AC0. The product of the unsigned content addressed by AR4
and the unsigned content addressed by CDP is stored in AC1.

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-332 SWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0000 10mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand LO(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC1. The other data memory operand LO(coef(Cmem)) is addressed by
DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply and Accumulate With Parallel Multiply MAC::MPY

5-333Instruction Set DescriptionsSWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = uns(*AR3−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the lower part of CDP
is stored in AC0. AR3 is decremented by 1. When
CDP+ is used with HI/LO, CDP is incremented by 2.

Execution

ACy+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MAC::MPY Multiply and Accumulate with Parallel Multiply

Instruction Set Descriptions5-334 SWPU068E

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F00 8000

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate With Parallel Multiply MAC::MPY

5-335Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0010 10mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand LO(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC1. The other data memory operand LO(coef(Cmem)) is addressed by
DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-336 SWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(*AR3−) *
uns(HI(coef(*CDP+)))),
AC0 = uns(*AR3−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The product of
the unsigned content addressed by AR3 and the unsigned
content addressed by the higher part of the coefficient
data pointer register (CDP) is added to the content of
AC1, which has been shifted to the right by 16 bits. The
result is stored in AC1. The product of the unsigned con-
tent addressed by AR3 and the unsigned content ad-
dressed by the lower part of CDP is stored in AC0. AR3 is
decremented by 1. When CDP+ is used with HI/LO, CDP
is incremented by 2.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-337Instruction Set DescriptionsSWPU068E

Execution

(ACy>>#16)+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F00 0800

Coeff memory

2000h 8000 2000h 8000

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-338 SWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0100 10mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand LO(Lmem)
and the content of data memory operand LO(coef(Cmem)). The data memory
operand LO(Lmem) is addressed by DAGEN path X with the next address of
EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word memory data, is driven on data bus
DDB and sign extended to 17 bits in the MAC1. The other data memory
operand LO(coef(Cmem)) is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Multiply and Accumulate With Parallel Multiply MAC::MPY

5-339Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = uns(LO(*AR3−)) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is added to the content of
AC1. The result is stored in AC1. The product of
the unsigned content addressed by the lower part
of AR3 and the unsigned content addressed by the
lower part of CDP is stored in AC0. When AR3− is
used with HI/LO, AR3 is decremented by 2. When
CDP+ is used with HI/LO, CDP is incremented by
2.

MAC::MPY Multiply and Accumulate with Parallel Multiply

Instruction Set Descriptions5-340 SWPU068E

Execution

ACy+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate With Parallel Multiply MAC::MPY

5-341Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0110 10mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand LO(Lmem)
and the content of data memory operand LO(coef(Cmem)). The data memory
operand LO(Lmem) is addressed by DAGEN path X with the next address of
EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word memory data, is driven on data bus
DDB and sign extended to 17 bits in the MAC1. The other data memory
operand LO(coef(Cmem)) is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-342 SWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-343Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = uns(LO(*AR3−)) * uns(LO(coef(*CDP+)))

Both instructions are performed in paral-
lel. The product of the unsigned content
addressed by the higher part of AR3 and
the unsigned content addressed by the
higher part of the coefficient data pointer
register (CDP) is added to the content of
AC1, which has been shifted to the right
by 16 bits. The result is stored in AC1.
The product of the unsigned content ad-
dressed by the lower part of AR3 and the
unsigned content addressed by the lower
part of CDP is stored in AC0. When AR3−
is used with HI/LO, AR3 is decremented
by 2. When CDP+ is used with HI/LO,
CDP is incremented by 2.

Execution

(ACy>>#16)+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F80 0800

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MAC::MPY Multiply and Accumulate With Parallel Multiply

Instruction Set Descriptions5-344 SWPU068E

Multiply and Accumulate With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0100 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the contents of data memory operand Xmem,
extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply and Accumulate with Parallel Multiply MAC::MPY

5-345Instruction Set DescriptionsSWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(*AR3−) *
uns(HI(coef(*CDP+)))),
AC0 = uns(*AR2−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1, which has been shifted to the right by
16 bits. The result is stored in AC1. The product of the
unsigned content addressed by AR2 and the unsigned
content addressed by the lower part of the CDP is
stored in AC0. AR3 and AR2 are decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

MAC::MPY Multiply and Accumulate with Parallel Multiply

Instruction Set Descriptions5-346 SWPU068E

Execution

M40(rnd(uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd((ACy >> #16) + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-347Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply and SubtractMAC::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[2] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[3] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[4] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[5] ACy = M40(rnd(ACy + uns(Ymem) *
uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) *
uns(LO(coef(Cmem)))))

No 5 1 X

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 1 X

Description These instructions perform two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

MAC::MAS Multiply and Accumulate with Parallel Multiply and Subtract

Instruction Set Descriptions5-348 SWPU068E

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Subtract

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Multiply

� Parallel Multiply and Subtracts

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-349Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0001 10mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand LO(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC1. The other data memory operand LO(coef(Cmem)) is
addressed by DAGEN path C with the next address of EA (EA+1 when EA is
even, EA−1 when EA is odd); the data, which can be assumed to be the lower
part of long word coefficient data, is driven on data bus BDB and sign extended
to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-350 SWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the lower part of CDP
is subtracted from the content of AC0. The result is
stored in AC0. AR3 is decremented by 1. When CDP+
is used with HI/LO, CDP is incremented by 2.

Execution

ACy+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-351Instruction Set DescriptionsSWPU068E

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F00 8000

Coeff memory

2000h 8000 2000h 8000

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-352 SWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0010 01mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand LO(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC1. The other data memory operand LO(coef(Cmem)) is
addressed by DAGEN path C with the next address of EA (EA+1 when EA is
even, EA−1 when EA is odd); the data, which can be assumed to be the lower
part of long word coefficient data, is driven on data bus BDB and sign extended
to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-353Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-354 SWPU068E

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel.
The product of the unsigned content ad-
dressed by AR3 and the unsigned content
addressed by the higher part of the coefficient
data pointer register (CDP) is added to the
content of AC1, which has been shifted to the
right by 16 bits. The result is stored in AC1.
The product of the unsigned content ad-
dressed by AR3 and the unsigned content
addressed by the lower part of CDP is sub-
tracted from the content of AC0. The result is
stored in AC0. AR3 is decremented by 1.
When CDP+ is used with HI/LO, CDP is in-
cremented by 2.

Execution

(ACy>>#16)+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F00 0800

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-355Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0101 10mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-356 SWPU068E

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is added to the content of
AC1. The result is stored in AC1. The product of
the unsigned content addressed by lower part of
AR3 and the unsigned content addressed by the
lower part of CDP is subtracted from the content
of AC0. The result is stored in AC0. When AR3−
is used with HI/LO, AR3 is decremented by 2.
When CDP+ is used with HI/LO, CDP is increm-
ented by 2.

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-357Instruction Set DescriptionsSWPU068E

Execution

ACy+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 0000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-358 SWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0110 01mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-359Instruction Set DescriptionsSWPU068E

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-360 SWPU068E

Example

Syntax Description

AC1 = (AC1>>#16) + (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel.
The product of the unsigned content
addressed by the higher part of AR3 and
the unsigned content addressed by the
higher part of the coefficient data pointer
register (CDP) is added to the content of
AC1, which has been shifted to the right by
16 bits. The result is stored in AC1. The
product of the unsigned content addressed
by lower part of AR3 and the unsigned
content addressed by the lower part of
CDP is subtracted from the content of
AC0. The result is stored in AC0. When
AR3− is used with HI/LO, AR3 is
decremented by 2. When CDP+ is used
with HI/LO, CDP is incremented by 2.

Execution

(ACy>>#16)+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F80 0800

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate With Parallel Multiply and Subtract MAC::MAS

5-361Instruction Set DescriptionsSWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = M40(rnd(ACy + uns(Ymem) *
uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) *
uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0011 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the contents of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAC::MAS Multiply and Accumulate with Parallel Multiply and Subtract

Instruction Set Descriptions5-362 SWPU068E

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR2 and the
unsigned content addressed by the lower part of the
CDP is subtracted from the content of AC0. The result
is stored in AC0. AR3 and AR2 are decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

 Multiply and Subtract with Parallel Multiply and Accumulate MAC::MAS

5-363Instruction Set DescriptionsSWPU068E

Execution

M40(rnd(ACx − uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(ACy + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

MAC::MAS Multiply and Accumulate With Parallel Multiply and Subtract

Instruction Set Descriptions5-364 SWPU068E

Multiply and Accumulate With Parallel Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0100 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
accumulate (MAC) and multiply and subtract (MAS). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the contents of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Multiply and Accumulate with Parallel Multiply and Subtract MAC::MAS

5-365Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
bus are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(*AR3−) *
uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1, which has been shifted to the right by
16 bits. The result is stored in AC1. The product of the
unsigned content addressed by AR2 and the unsigned
content addressed by the lower part of the CDP is
added to the content of AC0. The result is stored in
AC0. AR3 and AR2 are decremented by 1. When
CDP+ is used with HI/LO, CDP is incremented by 2.

MAC::MAS Multiply and Accumulate with Parallel Multiply and Subtract

Instruction Set Descriptions5-366 SWPU068E

Execution

M40(rnd(ACx − uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd((ACy >> #16) + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply and Accumulate with Parallel Store Accumulator Content to Memory MACM::MOV

5-367Instruction Set DescriptionsSWPU068E

Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

MACM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 001x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and accumulate
(MAC) and store.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31−16), is stored to
the memory location.

MACM::MOV Multiply and Accumulate with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-368 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(saturate(uns(ACx << T2))) [,T3 = Xmem]

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(saturate(ACx << T2)) [,T3 = Xmem]

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SST, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Delay

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Accumulate with Parallel Multiply

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiply and Accumulates

Example

Syntax Description

AC0 = AC0 + (T0 * *AR3),
*AR4 = HI(AC1 << T2)

Both instructions are performed in parallel. The product of the content
addressed by AR3 and the content of T0 is added to the content of AC0. The
result is stored in AC0. The content of AC1 is shifted by the content of T2, and
AC1(31−16) is stored at the address of AR4.

 Multiply and Subtract MAS

5-369Instruction Set DescriptionsSWPU068E

Multiply and SubtractMAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy – (ACx * Tx)) Yes 2 1 X

[2] ACx = rnd(ACx – (Smem * coef(Cmem)))[, T3 = Smem] No 3 1 X

[3] ACy = rnd(ACy – (Smem * ACx))[, T3 = Smem] No 3 1 X

[4] ACy = rnd(ACx – (Tx * Smem))[, T3 = Smem] No 3 1 X

[5] ACy = M40(rnd(ACx – (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

[6] ACx = rnd(ACx − (Smem * uns(coef(Cmem)))) No 3 1 X

Description These instructions perform a multiplication and a subtraction in the D-unit
MAC.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Accumulate

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Multiply

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Parallel Multiply and Subtracts

MAS Multiply and Subtract

Instruction Set Descriptions5-370 SWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy – (ACx * Tx)) Yes 2 1 X

Opcode 0101 011E DDSS ss1%

Operands ACx, ACy, Tx

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32−16) and the content of Tx, sign
extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = rnd(AC1 – (AC0 * T1)) The product of the content of AC0 and the content of T1 is subtracted from
the content of AC1. The result is rounded and stored in AC1.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 3400 0000 AC1 00 1680 0000

T1 2000 T1 2000

M40 0 M40 0

ACOV1 0 ACOV1 0

FRCT 0 FRCT 0

 Multiply and Subtract MAS

5-371Instruction Set DescriptionsSWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = rnd(ACx – (Smem * coef(Cmem)))[, T3 = Smem] No 3 1 X

Opcode 1101 0001 AAAA AAAI U%DD 10mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of a memory location
(Smem), sign extended to 17 bits, and the content of a data memory operand
Cmem, addressed using the coefficient addressing mode and sign extended
to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MAS Multiply and Subtract

Instruction Set Descriptions5-372 SWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC2 = rnd(AC2 – (*AR1 * coef(*CDP))) The product of the content addressed by AR1 and the content
addressed by the coefficient data pointer register (CDP) is subtracted
from the content of AC2. The result is rounded and stored in AC2.

Before After

AC2 00 EC00 0000 AC2 00 EC01 0000

AR1 0302 AR2 0302

CDP 0202 CDP 0202

302 FE00 302 FE00

202 0040 202 0040

ACOV2 0 ACOV2 1

SATD 0 SATD 0

RDM 0 RDM 0

FRCT 0 FRCT 0

 Multiply and Subtract MAS

5-373Instruction Set DescriptionsSWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = rnd(ACy – (Smem * ACx))[, T3 = Smem] No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 01SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32−16) and the content of a
memory location (Smem), sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (*AR3 * AC1) The product of the content addressed by AR3 and the content of AC1 is
subtracted from the content of AC0. The result is stored in AC0.

MAS Multiply and Subtract

Instruction Set Descriptions5-374 SWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = rnd(ACx – (Tx * Smem))[, T3 = Smem] No 3 1 X

Opcode 1101 0101 AAAA AAAI U%DD ssSS

Operands ACx, ACy, Smem, Tx

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of Tx, sign extended to
17 bits, and the content of a memory location (Smem), sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (T0 * *AR3) The product of the content addressed by AR3 and the content of T0 is
subtracted from the content of AC1. The result is stored in AC0.

 Multiply and Subtract MAS

5-375Instruction Set DescriptionsSWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = M40(rnd(ACx – (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM SSDD 011g uuU%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of data memory operand
Xmem, extended to 17 bits, and the content of data memory operand Ymem,
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

This instruction provides the option to store the 16-bit data memory operand
Xmem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MAS Multiply and Subtract

Instruction Set Descriptions5-376 SWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC3 = AC3 – (uns(*AR2+) * uns(*AR3+)) The product of the unsigned content addressed by AR2 and the
unsigned content addressed by AR3 is subtracted from the content
of AC3. The result is stored in AC3. AR2 and AR3 are both
incremented by 1.

Before After

AC3 00 2300 EC00 AC3 FF B3E0 EC00

AR2 302 AR2 303

AR3 202 AR3 203

ACOV3 0 ACOV3 0

302 FE00 302 FE00

202 7000 202 7000

FRCT 0 FRCT 0

 Multiply and Subtract MAS

5-377Instruction Set DescriptionsSWPU068E

Multiply and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACx = rnd(ACx − (Smem * uns(coef(Cmem)))) No 3 1 X

Opcode 1101 0000 AAAA AAAI 0%DD 11mm

Operands ACx, Cmem, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC1.
The input operands of the multiplier are the content of a data memory location
(Smem) and the content of a data memory operand (Cmem).

Note:

The uns keyword is mandatory for this instruction.

The data memory operand Smem is addressed by DAGEN path X by using
the Smem addressing mode, driven on data bus DDB, and sign extended to
17 bits in the MAC1. The another data memory operand Cmem is addressed
by DAGEN path C by using the coefficient addressing mode, driven on data
bus BDB, and sign extended to 17 bits with filling zeros in the MAC1.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To

MAS Multiply and Subtract

Instruction Set Descriptions5-378 SWPU068E

prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

This instruction can be applied to compute the intermediate multiplication
result and subtraction from the other partial result of double precision
arithmetic, and to free up one DAGEN operator (DAGEN path Y) for storing
an instruction with enabling parallelism.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 − (*AR3− * uns(coef(*CDP+))) The product of the content addressed by AR3 and the unsigned
content addressed by the coefficient data pointer register (CDP)
is subtracted from the content of AC0. The result is stored in
AC0. AR3 is decremented by 1 and CDP is incremented by 1.

Execution

rnd(ACx+(Smem)[16:0]*uns(Cmem)[16:0]) −> ACx

Before After

AC0 00 0000 8000 AC0 00 0100 8000

XAR3 00 1001 XAR3 00 1000

Data memory

1001h FE00 1001h FE00

XCDP 00 2000 XCDP 00 2001

Coeff memory

2000h 8000 2000h 8000

 Multiply and Subtract with Parallel Load Accumulator from Memory MASM::MOV

5-379Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel Load Accumulator from MemoryMASM::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = rnd(ACx – (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 100x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and subtract
(MAS), and load.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation loads the content of data memory operand Ymem,
which has been shifted to the left by 16 bits, into accumulator ACy.

� The input operand is sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� The input operand is shifted to the left by 16 bits according to M40.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

MASM::MOV Multiply and Subtract with Parallel Load Accumulator from Memory

Instruction Set Descriptions5-380 SWPU068E

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Subtract

� Multiply and Subtract with Parallel Multiply

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Parallel Multiply and Subtracts

Example

Syntax Description

AC0 = AC0 – (T0 * *AR3),
AC1 = *AR4 << #16

Both instructions are performed in parallel. The product of the content ad-
dressed by AR3 and the content of T0 is subtracted from the content of AC0.
The result is stored in AC0. The content addressed by AR4, which has been
shifted to the left by 16 bits, is stored in AC1.

 Multiply and Subtract with Parallel Multiply MAS::MPY

5-381Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel MultiplyMAS::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

[2] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

Description These instructions perform two parallel operations in one cycle: multiply and
subtract (MAS) and multiply. The operations are executed in the two D-unit
MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Accumulate with Parallel Multiply

� Multiply and Subtract

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Parallel Multiply and Subtracts

MAS::MPY Multiply and Subtract With Parallel Multiply

Instruction Set Descriptions5-382 SWPU068E

Multiply and Subtract With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

 Multiply and Subtract with Parallel Multiply MAS::MPY

5-383Instruction Set DescriptionsSWPU068E

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (uns(*AR3) * uns(coef(*CDP))),
AC1 = uns(*AR4) * uns(coef(*CDP))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned
content addressed by the coefficient data pointer register
(CDP) is subtracted from the content of AC0. The result is
stored in AC0. The product of the unsigned content
addressed by AR4 and the unsigned content addressed by
CDP is stored in AC1.

MAS::MPY Multiply and Subtract With Parallel Multiply

Instruction Set Descriptions5-384 SWPU068E

Multiply and Subtract With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0001 00mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand LO(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC1. The other data memory operand LO(coef(Cmem)) is addressed by
DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Multiply and Subtract With Parallel Multiply MAS::MPY

5-385Instruction Set DescriptionsSWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = uns(*AR3−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is subtracted
from the content of AC1. The result is stored in AC1.
The product of the unsigned content addressed by
AR3 and the unsigned content addressed by the lower
part of CDP is stored in AC0. AR3 is decremented by
1. When CDP+ is used with HI/LO, CDP is increm-
ented by 2.

Execution

ACy−M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MAS::MPY Multiply and Subtract With Parallel Multiply

Instruction Set Descriptions5-386 SWPU068E

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8100 8000

Coeff memory

2000h 8000 2000h 8000

 Multiply and Subtract With Parallel Multiply MAS::MPY

5-387Instruction Set DescriptionsSWPU068E

Multiply and Subtract With Parallel Multiply

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0101 00mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply. The operations are executed in the two D-unit
MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand LO(Lmem)
and the content of data memory operand LO(coef(Cmem)). The data memory
operand LO(Lmem) is addressed by DAGEN path X with the next address of
EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word memory data, is driven on data bus
DDB and sign extended to 17 bits in the MAC1. The other data memory
operand LO(coef(Cmem)) is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAS::MPY Multiply and Subtract With Parallel Multiply

Instruction Set Descriptions5-388 SWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = uns(LO(*AR3−)) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is subtracted from the con-
tent of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by the lower
part of AR3 and the unsigned content addressed
by the lower part of CDP is stored in AC0. When
AR3− is used with HI/LO, AR3 is decremented by
2. When CDP+ is used with HI/LO, CDP is increm-
ented by 2.

 Multiply and Subtract With Parallel Multiply MAS::MPY

5-389Instruction Set DescriptionsSWPU068E

Execution

ACy−M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8080 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-390 SWPU068E

Multiply and Subtract with Parallel Multiply and AccumulateMAS::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

[2] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

[3] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[4] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Description These instructions perform two parallel operations in one cycle: multiply and
subtract (MAS) and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Subtract

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Multiply

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Parallel Multiply and Subtracts

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-391Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-392 SWPU068E

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = M40(rnd(AC0 – (uns(*AR0) * uns(coef(*CDP))))),
AC1 = M40(rnd(AC1 + (uns(*AR1) * uns(coef(*CDP)))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by AR0
and the unsigned content addressed by the
coefficient data pointer register (CDP) is subtracted
from the content of AC0. The result is rounded and
stored in AC0. The product of the unsigned content
addressed by AR1 and the unsigned content
addressed by CDP is added to the content of AC1.
The result is rounded and stored in AC1.

Before After

AC0 00 6900 0000 AC0 00 486B 0000

AC1 00 0023 0000 AC1 00 95E3 0000

*AR0 3400 *AR0 3400

*AR1 EF00 *AR1 EF00

*CDP A067 *CDP A067

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-393Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACx.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACy(39).

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-394 SWPU068E

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (uns(*AR3) * uns(coef(*CDP))),
AC1 = (AC1 >> #16) + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by AR3
and the unsigned content addressed by the
coefficient data pointer register (CDP) is subtracted
from the content of AC0. The result is stored in AC0.
The product of the unsigned content addressed by
AR4 and the unsigned content addressed by CDP is
added to the content of AC1, which has been shifted
to the right by 16 bits. The result is stored in AC1.

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-395Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0001 11mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand Smem and the content of data memory operand
LO(coef(Cmem)). The data memory operand Smem is addressed by DAGEN
path X with the corresponding addressing mode, driven on data bus DDB, and
sign extended to 17 bits in the MAC1. The other data memory operand
LO(coef(Cmem)) is addressed by DAGEN path C with the next address of EA
(EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-396 SWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 + (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is subtracted
from the content of AC1. The result is stored in AC1.
The product of the unsigned content addressed by
AR3 and the unsigned content addressed by the lower
part of CDP is added to the content of AC0. The result
is stored in AC0. AR3 is decremented by 1. When
CDP+ is used with HI/LO, CDP is incremented by 2.

Execution

ACy−M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-397Instruction Set DescriptionsSWPU068E

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8100 8000

Coeff memory

2000h 8000 2000h 8000

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-398 SWPU068E

Multiply and Subtract with Parallel Multiply and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0101 11mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel operations in one cycle: multiply and
subtract (MAS) and multiply and accumulate (MAC). The operations are
executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

 Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC

5-399Instruction Set DescriptionsSWPU068E

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and subtracted from the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = AC0 + (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is subtracted from the con-
tent of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by the low-
er part of AR3 and the unsigned content ad-
dressed by the lower part of CDP is added to the
content of AC0. The result is stored in AC0. When
AR3− is used with HI/LO, AR3 is decremented by
2. When CDP+ is used with HI/LO, CDP is in-
cremented by 2.

MAS::MAC Multiply and Subtract with Parallel Multiply and Accumulate

Instruction Set Descriptions5-400 SWPU068E

Execution

ACy−M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8080 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Multiply and Subtract with Parallel Store Accumulator Content to Memory MASM::MOV

5-401Instruction Set DescriptionsSWPU068E

Multiply and Subtract with Parallel Store Accumulator Content to
Memory

MASM:MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 010x ssU%

Operands ACx, ACy, Tx, Xmem, Ymem

Description This instruction performs two operations in parallel: multiply and subtract
(MAS) and store.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of Tx, sign extended
to 17 bits, and the content of data memory operand Xmem, sign extended to
17 bits.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� This instruction provides the option to store the 16-bit data memory
operand Xmem in temporary register T3.

The second operation shifts the accumulator ACx by the content of T2 and
stores ACx(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACx(31−16), is stored to
the memory location.

MASM::MOV Multiply and Subtract with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-402 SWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 determine the
shift quantity. The 6 LSBs of T2 define a shift quantity within –32 to +31. When
the 16-bit value in T2 is between –32 to –17, a modulo 16 operation transforms
the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(saturate(uns(ACx << T2))) [,T3 = Xmem]

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(saturate(ACx << T2)) [,T3 = Xmem]

Status Bits Affected by C54CM, FRCT, M40, RDM, SATD, SMUL, SST, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Accumulate with Parallel Store Accumulator Content to
Memory

� Multiply and Subtract

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Multiply

� Multiply and Subtract with Parallel Multiply and Accumulate

� Parallel Multiply and Subtracts

Example

Syntax Description

AC0 = AC0 – (T0 * *AR3),
*AR4 = HI(AC1 << T2)

Both instructions are performed in parallel. The product of the content
addressed by AR3 and the content of T0 is subtracted from the content of AC0.
The result is stored in AC0. The content of AC1 is shifted by the content of T2,
and AC1(31−16) is stored at the address of AR4.

 Negate Accumulator, Auxiliary, or Temporary Register Content NEG

5-403Instruction Set DescriptionsSWPU068E

Negate Accumulator, Auxiliary, or Temporary Register ContentNEG

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = – src Yes 2 1 X

Opcode 0011 010E FSSS FDDD

Operands dst, src

Description This instruction computes the 2s complement of the content of the source
register (src). This instruction clears the CARRY status bit to 0 for all nonzero
values of src. If src equals 0, the CARRY status bit is set to 1.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

NEG Negate Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-404 SWPU068E

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Content

Example

Syntax Description

AC0 = –AC1 The 2s complement of the content of AC1 is stored in AC0.

 No Operation (nop) NOP

5-405Instruction Set DescriptionsSWPU068E

No Operation (nop)NOP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] nop Yes 1 1 D

[2] nop_16 Yes 2 1 D

Opcode 0010 000E

Operands none

Description Instruction [1] increments the program counter register (PC) by 1 byte.
Instruction [2] increments the PC by 2 bytes.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

nop The program counter (PC) is incremented by 1 byte.

AMAR Parallel Modify Auxiliary Register Contents

Instruction Set Descriptions5-406 SWPU068E

Parallel Modify Auxiliary Register ContentsAMAR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] mar(Xmem), mar(Ymem), mar(coef(Cmem)) No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 10mm xxxx xxxx

Operands Cmem, Xmem, Ymem

Description This instruction performs three parallel modify auxiliary register (MAR)
operations in one cycle. The auxiliary register modification is specified by:

� The content of data memory operand Xmem

� The content of data memory operand Ymem

� The content of a data memory operand Cmem, addressed using the
coefficient addressing mode

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Modify Auxiliary Register Content

� Modify Extended Auxiliary Register Content

Example

Syntax Description

mar(*AR3+), mar(*AR4−), mar(coef(*CDP)) AR3 is incremented by 1. AR4 is decremented by 1. CDP is not
modified.

 Parallel Multiplies MPY::MPY

5-407Instruction Set DescriptionsSWPU068E

Parallel MultipliesMPY::MPY

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 1 X

Description These instructions perform two parallel multiply operations in one cycle. The
operations are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply

� Multiply

� Multiply and Accumulate with Parallel Multiply

� Multiply and Subtract with Parallel Multiply

� Parallel Multiply and Accumulates

� Parallel Multiply and Subtracts

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-408 SWPU068E

Parallel Multiplies

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

No 4 1 X

Opcode 1000 0010 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply operations in one cycle. The
operations are executed in the two D-unit MACs.

The first operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Xmem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and extended to 17 bits.

This second operation performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of data memory operand Ymem,
extended to 17 bits, and the content of a data memory operand Cmem,
addressed using the coefficient addressing mode and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

 Parallel Multiplies MPY::MPY

5-409Instruction Set DescriptionsSWPU068E

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = uns(*AR3) * uns(coef(*CDP)),
AC1 = uns(*AR4) * uns(coef(*CDP))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned content
addressed by the coefficient data pointer register (CDP) is stored in
AC0. The product of the unsigned content addressed by AR4 and the
unsigned content addressed by CDP is stored in AC1.

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-410 SWPU068E

Parallel Multiplies

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0000 00mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel multiply operations in one cycle. The
operations are executed in the D-unit MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand HI(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC2 (this data is shared to MAC1 and MAC2). The other data memory
operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand Smem and
the content of data memory operand LO(coef(Cmem)). The data memory
operand Smem is addressed by DAGEN path X with the corresponding
addressing mode, driven on data bus DDB, and sign extended to 17 bits in the
MAC1. The other data memory operand LO(coef(Cmem)) is addressed by
DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

 Parallel Multiplies MPY::MPY

5-411Instruction Set DescriptionsSWPU068E

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = uns(*AR3−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned content
addressed by the higher part of the coefficient data pointer
register (CDP) is stored in AC1. The product of the unsigned
content addressed by AR3 and the unsigned content ad-
dressed by the lower part of CDP is stored in AC0. AR3 is de-
cremented by 1. When CDP+ is used with HI/LO, CDP is in-
cremented by 2.

Execution

M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-412 SWPU068E

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F00 0000

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiplies MPY::MPY

5-413Instruction Set DescriptionsSWPU068E

Parallel Multiplies

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0100 00mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel multiply operations in one cycle. The
operations are executed in the D-unit MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the content of data memory operand HI(Lmem)
and the content of data memory operand HI(coef(Cmem)). The data memory
operand HI(Lmem) is addressed by DAGEN path X with the EA (effective
address); the data, which can be assumed to be the higher part of long word
memory data, is driven on data bus CDB and sign extended to 17 bits in the
MAC2 (this data is shared to MAC1 and MAC2). The other data memory
operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA; the
data, which can be assumed to be the higher part of long word coefficient data,
is driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the content of data memory operand LO(Lmem)
and the content of data memory operand LO(coef(Cmem)). The data memory
operand LO(Lmem) is addressed by DAGEN path X with the next address of
EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word memory data, is driven on data bus
DDB and sign extended to 17 bits in the MAC1. The other data memory
operand LO(coef(Cmem)) is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-414 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(HI(*AR3−)) * uns(HI(coef(*CDP+))),
AC0 = uns(LO(*AR3−)) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The product of
the unsigned content addressed by AR3 and the unsigned
content addressed by the higher part of the coefficient data
pointer register (CDP) is stored in AC1. The product of the
unsigned content addressed by AR3 and the unsigned
content addressed by the lower part of CDP is stored in
AC0. When AR3− is used with HI/LO, AR3 is decremented
by 2. When CDP+ is used with HI/LO, CDP is incremented
by 2.

Execution

M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Parallel Multiplies MPY::MPY

5-415Instruction Set DescriptionsSWPU068E

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-416 SWPU068E

Parallel Multiplies

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0010 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply operations in one cycle. The
operations are executed in the D-unit MACs.

The first operation performs a multiplication in the D-unit MAC2. The input
operands of the multiplier are the contents of data memory operand Ymem,
extended to 17 bits, and the content of data memory operand HI(coef(Cmem))
which is addressed by DAGEN path C with the EA; the data, which can be
assumed to be the higher part of long word coefficient data, is driven on data
bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication in the D-unit MAC1. The input
operands of the multiplier are the contents of data memory operand Xmem,
extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

 Parallel Multiplies MPY::MPY

5-417Instruction Set DescriptionsSWPU068E

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = uns(*AR3−) * uns(HI(coef(*CDP+))),
AC0 = uns(*AR2−) * uns(LO(coef(*CDP+)))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is stored in AC1.
The product of the unsigned content addressed by
AR2 and the unsigned content addressed by the lower
part of the CDP is stored in AC0. AR3 and AR2 are
decremented by 1. When CDP+ is used with HI/LO,
CDP is incremented by 2.

Execution

M40(rnd(uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

MPY::MPY Parallel Multiplies

Instruction Set Descriptions5-418 SWPU068E

Before After

AC0 FF 8000 0000 AC0 00 3F80 0000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 FF 8000 0000 AC1 00 7F80 0000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Accumulates MAC::MAC

5-419Instruction Set DescriptionsSWPU068E

Parallel Multiply and AccumulatesMAC::MAC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

[2] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M4(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

[3] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

[4] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

No 4 1 X

[5] ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[6] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[7] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[8] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[9] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[10] ACy = M40(rnd(ACy + uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

No 5 1 X

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-420 SWPU068E

No. PipelineCyclesSize
Parallel

Enable BitSyntax

[11] ACy = M40(rnd(ACy + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 1 X

[12] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 1 X

Description These instructions perform two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Accumulate

� Multiply and Accumulate

� Multiply and Accumulate with Parallel Delay

� Multiply and Accumulate with Parallel Load Accumulator from Memory

� Multiply and Accumulate with Parallel Multiply

� Multiply and Accumulate with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply with Parallel Multiply and Accumulate

� Parallel Multiplies

� Parallel Multiply and Subtracts

 Parallel Multiply and Accumulates MAC::MAC

5-421Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-422 SWPU068E

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (uns(*AR3) * uns(coef(*CDP))),
AC1 = AC1 + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned
content addressed by the coefficient data pointer register
(CDP) is added to the content of AC0. The result is stored in
AC0. The product of the unsigned content addressed by AR4
and the unsigned content addressed by CDP is added to the
content of AC1. The result is stored in AC1.

 Parallel Multiply and Accumulates MAC::MAC

5-423Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M4(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0011 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACx(39).

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-424 SWPU068E

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (AC0 >> #16) + (uns(*AR3) * uns(coef(*CDP))),
AC1 = AC1 + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by AR3
and the unsigned content addressed by the
coefficient data pointer register (CDP) is added to the
content of AC0, which has been shifted to the right by
16 bits. The result is stored in AC0. The product of the
unsigned content addressed by AR4 and the
unsigned content addressed by CDP is added to the
content of AC1. The result is stored in AC1.

 Parallel Multiply and Accumulates MAC::MAC

5-425Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0100 XXXM MMYY YMMM 11mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and an accumulation in the
D-unit MAC. The input operands of the multiplier are the content of data
memory operand Ymem, extended to 17 bits, and the content of a data
memory operand Cmem, addressed using the coefficient addressing mode
and extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator, which has been shifted to the right by 16 bits.
The shifting operation is performed with a sign extension of source
accumulator bit 39.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-426 SWPU068E

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (AC0 >> #16) + (uns(*AR3) * uns(coef(*CDP))),
AC1 = (AC1 >> #16) + (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The
product of the unsigned content addressed by AR3
and the unsigned content addressed by the
coefficient data pointer register (CDP) is added to the
content of AC0, which has been shifted to the right by
16 bits. The result is stored in AC0. The product of the
unsigned content addressed by AR4 and the
unsigned content addressed by CDP is added to the
content of AC1, which has been shifted to the right by
16 bits. The result is stored in AC1.

 Parallel Multiply and Accumulates MAC::MAC

5-427Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0001 01mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand Smem and the content of data memory operand
LO(coef(Cmem)). The data memory operand Smem is addressed by DAGEN
path X with the corresponding addressing mode, driven on data bus DDB, and
sign extended to 17 bits in the MAC1. The other data memory operand
LO(coef(Cmem)) is addressed by DAGEN path C with the next address of EA
(EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-428 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 + (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the lower part of CDP
is added to the content of AC0. The result is stored in
AC0. AR3 is decremented by 1 and CDP. When CDP+
is used with HI/LO, CDP is incremented by 2.

Execution

ACy+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Parallel Multiply and Accumulates MAC::MAC

5-429Instruction Set DescriptionsSWPU068E

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F00 8000

Coeff memory

2000h 8000 2000h 8000

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-430 SWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0010 00mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand Smem and the content of data memory operand
LO(coef(Cmem)). The data memory operand Smem is addressed by DAGEN
path X with the corresponding addressing mode, driven on data bus DDB, and
sign extended to 17 bits in the MAC1. The other data memory operand
LO(coef(Cmem)) is addressed by DAGEN path C with the next address of EA
(EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Parallel Multiply and Accumulates MAC::MAC

5-431Instruction Set DescriptionsSWPU068E

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACx(39).

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel.
The product of the unsigned content ad-
dressed by AR3 and the unsigned content
addressed by the higher part of the coefficient
data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1.
The product of the unsigned content ad-
dressed by AR3 and the unsigned content
addressed by the lower part of CDP is added
to the content of AC0, which has been shifted
to the right by 16 bits. The result is stored in
AC0. AR3 is decremented by 1. When CDP+
is used with HI/LO, CDP is incremented by 2.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-432 SWPU068E

Execution

ACy+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

(ACx>>#16)+M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0800 0000 AC0 00 3F80 0800

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Accumulates MAC::MAC

5-433Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = M40(rnd((ACy >> #16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0010 11mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand Smem and the content of data memory operand
LO(coef(Cmem)). The data memory operand Smem is addressed by DAGEN
path X with the corresponding addressing mode, driven on data bus DDB, and
sign extended to 17 bits in the MAC1. The other data memory operand
LO(coef(Cmem)) is addressed by DAGEN path C with the next address of EA
(EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-434 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator, which has been shifted to the right by 16 bits.
The shifting operation is performed with a sign extension of source
accumulator bit 39.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(*AR3−) *
uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(*AR3−) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned content
addressed by the higher part of the coefficient data pointer
register (CDP) is added to the content of AC1, which has been
shifted to the right by 16 bits. The result is stored in AC1. The
product of the unsigned content addressed by AR3 and the
unsigned content addressed by the lower part of CDP is add-
ed to the content of AC0, which has been shifted to the right
by 16 bits. The result is stored in AC0. AR3 is decremented by
1. When CDP+ is used with HI/LO, CDP is incremented by 2.

Execution

(ACy>>#16)+M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

(ACx>>#16)+M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Parallel Multiply and Accumulates MAC::MAC

5-435Instruction Set DescriptionsSWPU068E

Before After

AC0 00 0800 0000 AC0 00 3F80 0800

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F00 0800

Coeff memory

2000h 8000 2000h 8000

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-436 SWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0101 01mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB, and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB, and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Parallel Multiply and Accumulates MAC::MAC

5-437Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = AC0 + (uns(LO(*AR3−)) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is added to the content of
AC1. The result is stored in AC1. The product of
the unsigned content addressed by the lower part
of AR3 and the unsigned content addressed by the
lower part of CDP is added to the content of AC0.
The result is stored in AC0. When AR3− is used
with HI/LO, AR3 is decremented by 2. When CDP+
is used with HI/LO, CDP is incremented by 2.

Execution

ACy+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx+M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-438 SWPU068E

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Accumulates MAC::MAC

5-439Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0110 00mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB, and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-440 SWPU068E

� Multiplication overflow detection depends on SMUL.

� For the first operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACy.

� For the second operation, the 32-bit result of the multiplication is sign
extended to 40 bits and added to the source accumulator ACx, which has
been shifted to the right by 16 bits. The shifting operation is performed with
a sign extension of source accumulator ACx(39).

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(HI(*AR3−)) *
uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(LO(*AR3−)) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The product of
the unsigned content addressed by the higher part of AR3
and the unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the con-
tent of AC1. The result is stored in AC1. The product of the
unsigned content addressed by the lower part of AR3 and
the unsigned content addressed by the lower part of CDP is
added to the content of AC0, which has been shifted to the
right by 16 bits. The result is stored in AC0. When AR3− is
used with HI/LO, AR3 is decremented by 2. When CDP+ is
used with HI/LO, CDP is incremented by 2.

 Parallel Multiply and Accumulates MAC::MAC

5-441Instruction Set DescriptionsSWPU068E

Execution

ACy+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

(ACx>>#16)+M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0800 8000 AC0 00 3F80 0800

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-442 SWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ACy = M40(rnd((ACy >> #16) + (uns(HI(Lmem))*
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(LO(Lmem))*
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0110 11mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the content of data
memory operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Parallel Multiply and Accumulates MAC::MAC

5-443Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator, which has been shifted to the right by 16 bits.
The shifting operation is performed with a sign extension of source
accumulator bit 39.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = (AC1 >> #16) + (uns(HI(*AR3−)) *
uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(LO(*AR3−)) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The product of the
unsigned content addressed by the higher part of AR3 and
the unsigned content addressed by the higher part of the co-
efficient data pointer register (CDP) is added to the content of
AC1, which has been shifted to the right by 16 bits. The result
is stored in AC1. The product of the unsigned content ad-
dressed by lower part of AR3 and the unsigned content ad-
dressed by the lower part of CDP is added to the content of
AC0, which has been shifted to the right by 16 bits. The result
is stored in AC0. When AR3− is used with HI/LO, AR3 is de-
cremented by 2. When CDP+ is used with HI/LO, CDP is in-
cremented by 2.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-444 SWPU068E

Execution

(ACy>>#16)+M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

(ACx>>#16)+M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

Before After

AC0 00 0800 0000 AC0 00 3F80 0800

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0800 0000 AC1 00 7F80 0800

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Accumulates MAC::MAC

5-445Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ACy = M40(rnd(ACy + uns(Ymem) *
uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) *
uns(LO(coef(Cmem)))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0011 XXXM MMYY YMMM 00mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the contents of data
memory operand Xmem, extended to 17 bits, and the content of data memory
operand LO(coef(Cmem)) which is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-446 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 + (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR2 and the
unsigned content addressed by the lower part of the
CDP is added to the content of AC0. The result is
stored in AC0. AR3 and AR2 are decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

 Parallel Multiply and Accumulates MAC::MAC

5-447Instruction Set DescriptionsSWPU068E

Execution

M40(rnd(ACx + uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(ACy + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0000 8000 AC0 00 3F80 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-448 SWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] ACy = M40(rnd(ACy + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0011 XXXM MMYY YMMM 10mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the contents of data memory
operand HI(coef(Cmem)) which is addressed by DAGEN path C with the EA;
the data, which can be assumed to be the higher part of long word coefficient
data, is driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an accumulation in the
D-unit MAC1. The input operands of the multiplier are the contents of data
memory operand Xmem, extended to 17 bits, and the contents of data memory
operand LO(coef(Cmem)) which is addressed by DAGEN path C with the next
address of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which
can be assumed to be the lower part of long word coefficient data, is driven on
data bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

 Parallel Multiply and Accumulates MAC::MAC

5-449Instruction Set DescriptionsSWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(*AR2−) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR2 and the
unsigned content addressed by the lower part of the
CDP is added to the content of AC0, which has been
shifted to the right by 16 bits. The result is stored in
AC0. AR3 and AR2 are decremented by 1. When
CDP+ is used with HI/LO, CDP is incremented by 2.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-450 SWPU068E

Execution

M40(rnd((ACx >> #16) + uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(ACy + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0800 8000 AC0 00 3F80 0800

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Accumulates MAC::MAC

5-451Instruction Set DescriptionsSWPU068E

Parallel Multiply and Accumulates

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0011 XXXM MMYY YMMM 11mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and accumulate (MAC)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and an accumulation in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and an addition in the D-unit
MAC1. The input operands of the multiplier are the contents of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAC::MAC Parallel Multiply and Accumulates

Instruction Set Descriptions5-452 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 + (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = (AC0 >> #16) + (uns(*AR2−) *
uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is added to the
content of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by AR2 and the
unsigned content addressed by the lower part of the
CDP is added to the content of AC0, which has been
shifted to the right by 16 bits. The result is stored in
AC0. AR3 and AR2 are decremented by 1. When
CDP+ is used with HI/LO, CDP is incremented by 2.

 Parallel Multiply and Accumulates MAC::MAC

5-453Instruction Set DescriptionsSWPU068E

Execution

M40(rnd((ACx >> #16) + uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd((ACy >> #16) + uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0800 8000 AC0 00 3F80 0800

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 8000 0000 AC1 00 7F80 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-454 SWPU068E

Parallel Multiply and SubtractsMAS::MAS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy – (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

[2] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

[4] ACy = M40(rnd(ACy − (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 1 X

Description These instructions perform two parallel multiply and subtract (MAS)
operations in one cycle. The operations are executed in the two D-unit MACs.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Modify Auxiliary Register Content with Parallel Multiply and Subtract

� Multiply and Subtract

� Multiply and Subtract with Parallel Load Accumulator from Memory

� Multiply and Subtract with Parallel Multiply

� Multiply and Subtract with Parallel Multiply and Accumulate

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Parallel Multiplies

� Parallel Multiply and Accumulates

 Parallel Multiply and Subtracts MAS::MAS

5-455Instruction Set DescriptionsSWPU068E

Parallel Multiply and Subtracts

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy – (uns(Ymem) * uns(coef(Cmem)))))

No 4 1 X

Opcode 1000 0101 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and subtract (MAS) operations
in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Xmem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

The second operation performs a multiplication and a subtraction in the D-unit
MAC. The input operands of the multiplier are the content of data memory
operand Ymem, extended to 17 bits, and the content of a data memory
operand Cmem, addressed using the coefficient addressing mode and
extended to 17 bits.

� Input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-456 SWPU068E

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BB bus; on
some C55x-based devices, the BB bus is only connected to internal memory
and not to external memory. To prevent the generation of a bus error, the
Cmem operand must not be mapped on external memory.

Each data flow can also disable the usage of the corresponding MAC unit,
while allowing the modification of auxiliary registers in the three address
generation units through the following instructions:

� mar(Xmem)

� mar(Ymem)

� mar(Cmem)

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (uns(*AR3) * uns(coef(*CDP))),
AC1 = AC1 – (uns(*AR4) * uns(coef(*CDP)))

Both instructions are performed in parallel. The product of the
unsigned content addressed by AR3 and the unsigned
content addressed by the coefficient data pointer register
(CDP) is subtracted from the content of AC0. The result is
stored in AC0. The product of the unsigned content
addressed by AR4 and the unsigned content addressed by
CDP is subtracted from the content of AC1. The result is
stored in AC1.

 Parallel Multiply and Subtracts MAS::MAS

5-457Instruction Set DescriptionsSWPU068E

Parallel Multiply and Subtracts

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0011 00mm DDDD uug%

Operands ACx, ACy, Cmem, Smem

Description This instruction performs two parallel multiply and subtract (MAS) operations
in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand HI(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC2 (this data is shared to MAC1 and MAC2). The other data
memory operand HI(coef(Cmem)) is addressed by DAGEN path C with the EA
(effective address); the data, which can be assumed to be the higher part of
long word coefficient data, is driven on data bus B2DB and sign extended to
17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand Smem and the content of data memory operand LO(coef(Cmem)).
The data memory operand Smem is addressed by DAGEN path X with the
corresponding addressing mode, driven on data bus DDB, and sign extended
to 17 bits in the MAC1. The other data memory operand LO(coef(Cmem)) is
addressed by DAGEN path C with the next address of EA (EA+1 when EA is
even, EA−1 when EA is odd); the data, which can be assumed to be the lower
part of long word coefficient data, is driven on data bus BDB and sign extended
to 17 bits in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-458 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR3−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is subtracted
from the content of AC1. The result is stored in AC1.
The product of the unsigned content addressed by
AR3 and the unsigned content addressed by the lower
part of CDP is subtracted from the content of AC0. The
result is stored in AC0. AR3 is decremented by 1.
When CDP+ is used with HI/LO, CDP is incremented
by 2.

Execution

ACy−M40(rnd(uns(Smem)[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(Smem)[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

 Parallel Multiply and Subtracts MAS::MAS

5-459Instruction Set DescriptionsSWPU068E

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FF XAR3 00 10FE

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8100 8000

Coeff memory

2000h 8000 2000h 8000

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-460 SWPU068E

Parallel Multiply and Subtracts

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

No 4 1 X

Opcode 1111 1101 AAAA AAAI 0111 00mm DDDD uug%

Operands ACx, ACy, Cmem, Lmem

Description This instruction performs two parallel multiply and subtract (MAS) operations
in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the content of data memory
operand HI(Lmem) and the content of data memory operand HI(coef(Cmem)).
The data memory operand HI(Lmem) is addressed by DAGEN path X with the
EA (effective address); the data, which can be assumed to be the higher part
of long word memory data, is driven on data bus CDB and sign extended to
17 bits in the MAC2. The other data memory operand HI(coef(Cmem)) is
addressed by DAGEN path C with the EA; the data, which can be assumed
to be the higher part of long word coefficient data, is driven on data bus B2DB
and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the content of data memory
operand LO(Lmem) and the content of data memory operand
LO(coef(Cmem)). The data memory operand LO(Lmem) is addressed by
DAGEN path X with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word memory data, is driven on data bus DDB and sign extended to 17 bits
in the MAC1. The other data memory operand LO(coef(Cmem)) is addressed
by DAGEN path C with the next address of EA (EA+1 when EA is even, EA−1
when EA is odd); the data, which can be assumed to be the lower part of long
word coefficient data, is driven on data bus BDB and sign extended to 17 bits
in the MAC1.

� The content of the memory location is zero extended to 17 bits, if the
optional uns keyword is applied to the input operand.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

 Parallel Multiply and Subtracts MAS::MAS

5-461Instruction Set DescriptionsSWPU068E

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(HI(*AR3−)) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(LO(*AR3−)) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The
product of the unsigned content addressed by the
higher part of AR3 and the unsigned content ad-
dressed by the higher part of the coefficient data
pointer register (CDP) is subtracted from the con-
tent of AC1. The result is stored in AC1. The prod-
uct of the unsigned content addressed by the low-
er part of AR3 and the unsigned content ad-
dressed by the lower part of CDP is subtracted
from the content of AC0. The result is stored in
AC0. When AR3− is used with HI/LO, AR3 is de-
cremented by 2. When CDP+ is used with HI/LO,
CDP is incremented by 2.

Execution

ACy−M40(rnd(uns(HI(Lmem))[16:0]*uns(HI(coef(Cmem)))[16:0])) −> ACy

ACx−M40(rnd(uns(LO(Lmem))[16:0]*uns(LO(coef(Cmem)))[16:0])) −> ACx

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-462 SWPU068E

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR3 00 10FE XAR3 00 10FC

Data memory

10FFh FE00 10FFh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8080 8000

Data memory

10FEh FF00 10FEh FF00

Coeff memory

2000h 8000 2000h 8000

 Parallel Multiply and Subtracts MAS::MAS

5-463Instruction Set DescriptionsSWPU068E

Parallel Multiply and Subtracts

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = M40(rnd(ACy − (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

No 5 (*) 1 X

(*) 1 LSB is allocated to instruction slot #2.

Opcode 1001 0101 XXXM MMYY YMMM 01mm uuDD DDg%

Operands ACx, ACy, Cmem, Xmem, Ymem

Description This instruction performs two parallel multiply and subtraction (MAS)
operations in one cycle. The operations are executed in the two D-unit MACs.

The first operation performs a multiplication and a subtraction in the D-unit
MAC2. The input operands of the multiplier are the contents of data memory
operand Ymem, extended to 17 bits, and the content of data memory operand
HI(coef(Cmem)) which is addressed by DAGEN path C with the EA; the data,
which can be assumed to be the higher part of long word coefficient data, is
driven on data bus B2DB and sign extended to 17 bits in the MAC2.

The second operation performs a multiplication and a subtraction in the D-unit
MAC1. The input operands of the multiplier are the contents of data memory
operand Xmem, extended to 17 bits, and the content of data memory operand
LO(coef(Cmem)) which is addressed by DAGEN path C with the next address
of EA (EA+1 when EA is even, EA−1 when EA is odd); the data, which can be
assumed to be the lower part of long word coefficient data, is driven on data
bus BDB and sign extended to 17 bits in the MAC1.

� The input operands are extended to 17 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 17 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 17 bits according to
SXMD.

� If FRCT = 1, the output of the multiplier is shifted to the left by 1 bit.

� Multiplication overflow detection depends on SMUL.

MAS::MAS Parallel Multiply and Subtracts

Instruction Set Descriptions5-464 SWPU068E

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

� Because this instruction occupies both instruction slots #1 and #2, this can
not be executed in parallel with other instructions.

� The Xmem operand can access the MMRs but the Ymem operand can
not.

This instruction provides the option to locally set M40 to 1 for the execution of
the instruction, if the optional M40 keyword is applied to the instruction.

For this instruction, the Cmem operand is accessed through the BAB, BDB,
and B2DB buses; on some C55xx-based devices, the BAB, BDB, and B2DB
buses are only connected to internal memory and not to external memory. To
prevent the generation of a bus error, the Cmem operand must not be mapped
on external memory.

Compatibility with C54x devices (C54CM = 1)

None.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL, SXMD

Affects ACOVx, ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 − (uns(*AR3−) * uns(HI(coef(*CDP+)))),
AC0 = AC0 − (uns(*AR2−) * uns(LO(coef(*CDP+))))

Both instructions are performed in parallel. The prod-
uct of the unsigned content addressed by AR3 and the
unsigned content addressed by the higher part of the
coefficient data pointer register (CDP) is subtracted
from the content of AC1. The result is stored in AC1.
The product of the unsigned content addressed by
AR2 and the unsigned content addressed by the lower
part of the CDP is subtracted from the content of AC0.
The result is stored in AC0. AR3 and AR2 are decrem-
ented by 1. When CDP+ is used with HI/LO, CDP is
incremented by 2.

 Parallel Multiply and Subtracts MAS::MAS

5-465Instruction Set DescriptionsSWPU068E

Execution

M40(rnd(ACx − uns(Xmem)[16:0] * uns(LO(coef(Cmem)))[16:0])) −> ACx

M40(rnd(ACy − uns(Ymem)[16:0] * uns(HI(coef(Cmem)))[16:0])) −> ACy

Before After

AC0 00 0000 8000 AC0 FF C080 8000

XAR2 00 10FE XAR2 00 10FD

XAR3 00 20FE XAR3 00 20FD

Data memory

10FEh FE00 10FEh FE00

XCDP 00 2000 XCDP 00 2002

Coeff memory

2001h 4000 2001h 4000

AC1 00 0000 8000 AC1 FF 8080 8000

Data memory

20FEh FF00 20FFh FF00

Coeff memory

2000h 8000 2000h 8000

port Peripheral Port Register Access Qualifiers (readport/writeport)

Instruction Set Descriptions5-466 SWPU068E

Peripheral Port Register Access Qualifiersport

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] readport() No 1 1 D

[2] writeport() No 1 1 D

Opcode readport 1001 1001

writeport 1001 1010

Operands none

Description These operand qualifiers allow you to locally disable access toward the data
memory and enable access to the 64K-word I/O space. The I/O data location
is specified by the Smem, Xmem, or Ymem fields.

� A readport() operand qualifier may be included in any instruction making
a word single data memory access Smem or Xmem that is used in a read
operation, except instructions using delay().

� A readport() operand qualifier cannot be used in any instruction making
a dual memory access Xmem or Ymem that is used in read operation.
There is an exception for the instructions making a dual read/write
memory access of the type Ymem = Xmem, or Smem = coeff, where
readport() qualifier can be used.

� A writeport() operand qualifier may be included in any instruction making
a word single data memory access Smem or Ymem that is used in a write
operation, except instructions using the delay().

� A writeport() operand qualifier cannot be used in any instruction making
a dual memory access Xmem or Ymem that is used in write operation.
There is an exception for the instructions making a dual read/write
memory access of the type Ymem = Xmem, or coeff = Smem, where
writeport() qualifier can be used.

� A readport() or writeport() operand qualifier cannot be used as a
stand-alone instruction (the assembler generates an error message).

Any instruction making a word single data memory access Smem (except
those listed above) can use the *port(#k16) addressing mode to access the
64K-word I/O space with an immediate address. When an instruction uses
*port(#k16), the 16-bit unsigned constant, k16, is encoded in a 2-byte
extension to the instruction. Because of the extension, an instruction using
*port(#k16) cannot be executed in parallel with another instruction.

 Peripheral Port Register Access Qualifiers (readport/writeport) port

5-467Instruction Set DescriptionsSWPU068E

The following indirect operands cannot be used for accesses to I/O space. An
instruction using one of these operands requires a 2-byte extension to the
instruction. Because of the extension, an instruction using one of the following
indirect operands cannot be executed with these operand qualifiers.

� *ARn(#K16)

� *+ARn(#K16)

� *CDP(#K16)

� *+CDP(#K16)

Status Bits Affected by none

Affects none

Repeat An instruction using this operand qualifier can be repeated.

Example 1

Syntax Description

T2 = *AR3
|| readport()

The content addressed by AR3 (I/O address) is loaded into T2.

Example 2

Syntax Description

*AR3 = T2
|| writeport()

The content of T2 is written to the location addressed by AR3 (I/O address).

POPBOTH Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers (popboth)

Instruction Set Descriptions5-468 SWPU068E

Pop Accumulator or Extended Auxiliary Register Content from
Stack Pointers

POPBOTH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] xdst = popboth() Yes 2 1 X

Opcode 0101 000E XDDD 0100

Operands xdst

Description This instruction moves the content of two 16-bit data memory locations
addressed by the data stack pointer (SP) and system stack pointer (SSP) to
accumulator ACx or to the 23-bit destination register (XARx, XSP, XSSP, XDP,
or XCDP).

The content of xdst(15−0) is loaded from the location addressed by SP and the
content of xdst(31−16) is loaded from the location addressed by SSP. The
return address register (RETA) and the control-flow context register (CFCT)
are not accessed by this instruction even in the fast-return process.

When xdst is a 23-bit register, the upper 9 bits of the data memory addressed
by SSP are discarded and only the 7 lower bits of the data memory are loaded
into the high part of xdst(22−16).

When xdst is an accumulator, the guard bits, ACx(39−32), are reloaded
(unchanged) with the current value and are not modified by this instruction.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Pop Top of Stack

� Push to Top of Stack

� Push Accumulator or Extended Auxiliary Register Content to Stack Pointers

 Pop Top of Stack (pop) POP

5-469Instruction Set DescriptionsSWPU068E

Pop Top of StackPOP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst1, dst2 = pop() Yes 2 1 X

[2] dst = pop() Yes 2 1 X

[3] dst, Smem = pop() No 3 1 X

[4] ACx = dbl(pop()) Yes 2 1 X

[5] Smem = pop() No 2 1 X

[6] dbl(Lmem) = pop() No 2 1 X

Description These instructions move the content of the data memory location addressed
by the data stack pointer (SP) to:

� an accumulator, auxiliary, or temporary register
� a data memory location

The return address register (RETA) and the control-flow context register
(CFCT) are not accessed by this instruction even in the fast-return process.

When the destination register is an accumulator, the guard bits and the
16 higher bits of the accumulator, ACx(39−16), are reloaded (unchanged) with
the current value and are not modified by these instructions.

The increment operation performed on SP is done by the A-unit address
generator dedicated to the stack addressing management.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers

� Push to Top of Stack

� Push Accumulator or Extended Auxiliary Register Content to Stack Pointers

POP Pop Top of Stack (pop)

Instruction Set Descriptions5-470 SWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst1, dst2 = pop() Yes 2 1 X

Opcode 0011 101E FSSS FDDD
Note: FSSS = dst1, FDDD = dst2

Operands dst1, dst2

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst1 and moves the content of the 16-bit data
memory location pointed by SP + 1 to destination register dst2.

When the destination register, dst1 or dst2, is an accumulator, the content of
the 16-bit data memory operand is moved to the destination accumulator low
part, ACx(15−0). The guard bits and the 16 higher bits of the accumulator,
ACx(39−16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0, AC1 = pop() The content of the memory location pointed by the data stack pointer (SP) is copied
to AC0(15–0) and the content of the memory location pointed by SP + 1 is copied to
AC1(15–0). Bits 39−16 of the accumulators are unchanged. The SP is incremented
by 2.

Before After

AC0 00 4500 0000 AC0 00 4500 4890

AC1 F7 5678 9432 AC1 F7 5678 2300

SP 0300 SP 0302

300 4890 300 4890

301 2300 301 2300

 Pop Top of Stack (pop) POP

5-471Instruction Set DescriptionsSWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = pop() Yes 2 1 X

Opcode 0101 000E FDDD x010

Operands dst

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst.

When the destination register, dst, is an accumulator, the content of the 16-bit
data memory operand is moved to the destination accumulator low part,
ACx(15−0). The guard bits and the 16 higher bits of the accumulator,
ACx(39−16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 1.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated with a single conditional or unconditional
repeat instruction. It can be repeated in other repeat instructions.

Example

Syntax Description

AC0 = pop() The content of the memory location pointed by the data stack pointer (SP) is copied
to AC0(15–0). Bits 39−16 of AC0 are unchanged. The SP is incremented by 1.

POP Pop Top of Stack (pop)

Instruction Set Descriptions5-472 SWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst, Smem = pop() No 3 1 X

Opcode 1110 0100 AAAA AAAI FDDD x1xx

Operands dst, Smem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to destination register dst and moves the content of the 16-bit data
memory location pointed by SP + 1 to data memory (Smem) location.

When the destination register, dst, is an accumulator, the content of the 16-bit
data memory operand is moved to the destination accumulator low part,
ACx(15−0). The guard bits and the 16 higher bits of the accumulator,
ACx(39−16), are reloaded (unchanged) with the current value and are not
modified by this instruction. SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

AC0, *AR3 = pop() The content of the memory location pointed by the data stack pointer (SP) is copied
to AC0(15–0) and the content of the memory location pointed by SP + 1 is copied to
the location addressed by AR3. Bits 39−16 of AC0 are unchanged. The SP is
incremented by 2.

 Pop Top of Stack (pop) POP

5-473Instruction Set DescriptionsSWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACx = dbl(pop()) Yes 2 1 X

Opcode 0101 000E xxDD x011

Operands ACx

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to the accumulator high part ACx(31–16) and moves the content of the
16-bit data memory location pointed by SP + 1 to the accumulator low part
ACx(15–0).

The guard bits of the accumulator, ACx(39−32), are reloaded (unchanged)
with the current value and are not modified by this instruction. SP is
incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated with a single conditional or unconditional
repeat instruction. It can be repeated in other repeat instructions.

Example

Syntax Description

AC1 = dbl(pop()) The content of the memory location pointed by the data stack pointer (SP) is copied
to AC1(31–16) and the content of the memory location pointed by SP + 1 is copied
to AC1(15–0). Bits 39−32 of AC1 are unchanged. The SP is incremented by 2.

Before After

AC1 03 3800 FC00 AC1 03 5644 F800

SP 0304 SP 0306

304 5644 304 5644

305 F800 305 F800

POP Pop Top of Stack (pop)

Instruction Set Descriptions5-474 SWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] Smem = pop() No 2 1 X

Opcode 1011 1011 AAAA AAAI

Operands Smem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to data memory (Smem) location. SP is incremented by 1.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR1 = pop() The content of the memory location pointed by the data stack pointer (SP) is copied
to the location addressed by AR1. The SP is incremented by 1.

Before After

AR1 0200 AR1 0200

SP 0300 SP 0301

200 3400 200 6903

300 6903 300 6903

 Pop Top of Stack (pop) POP

5-475Instruction Set DescriptionsSWPU068E

Pop Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] dbl(Lmem) = pop() No 2 1 X

Opcode 1011 1000 AAAA AAAI

Operands Lmem

Description This instruction moves the content of the 16-bit data memory location pointed
by SP to the 16 highest bits of data memory location Lmem and moves the
content of the 16-bit data memory location pointed by SP + 1 to the 16 lowest
bits of data memory location Lmem.

When Lmem is at an even address, the two 16-bit values popped from the
stack are stored at memory location Lmem in the same order. When Lmem is
at an odd address, the two 16-bit values popped from the stack are stored at
memory location Lmem in the reverse order.

SP is incremented by 2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

dbl(*AR3–) = pop() The content of the memory location pointed by the data stack pointer (SP) is copied
to the 16 highest bits of the location addressed by AR3 and the content of the memory
location pointed by SP + 1 is copied to the 16 lowest bits of the location addressed
by AR3. Because this instruction is a long-operand instruction, AR3 is decremented
by 2 after the execution. The SP is incremented by 2.

PSHBOTH Push Accumulator or Extended Auxiliary Register Content to Stack Pointers (pshboth)

Instruction Set Descriptions5-476 SWPU068E

Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers

PSHBOTH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] pshboth(xsrc) Yes 2 1 X

Opcode 0101 000E XSSS 0101

Operands xsrc

Description This instruction moves the lower 32 bits of ACx or the content of the 23-bit
source register (XARx, XSP, XSSP, XDP, or XCDP) to the two 16-bit memory
locations addressed by the data stack pointer (SP) and system stack pointer
(SSP). The return address register (RETA) and the control-flow context
register (CFCT) are not accessed by this instruction even in the fast-return
process.

The content of xsrc(15−0) is moved to the location addressed by SP and the
content of xsrc(31−16) is moved to the location addressed by SSP.

When xsrc is a 23-bit register, the upper 9 bits of the location addressed by
SSP are filled with 0.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers

� Pop Top of Stack

� Push to Top of Stack

 Push to Top of Stack (push) PSH

5-477Instruction Set DescriptionsSWPU068E

Push to Top of StackPSH

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] push(src1, src2) Yes 2 1 X

[2] push(src) Yes 2 1 X

[3] push(src, Smem) No 3 1 X

[4] dbl(push(ACx)) Yes 2 1 X

[5] push(Smem) No 2 1 X

[6] push(dbl(Lmem)) No 2 1 X

Description These instructions move one or two operands to the data memory location
addressed by the data stack pointer (SP). The return address register (RETA)
and the control-flow context register (CFCT) are not accessed by this
instruction even in the fast-return process. The operands may be:

� an accumulator, auxiliary, or temporary register
� a data memory location

The decrement operation performed on SP is done by the A-unit address
generator dedicated to the stack addressing management.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Pop Top of Stack

� Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers

� Push Accumulator or Extended Auxiliary Register Content to Stack Pointers

PSH Push to Top of Stack (push)

Instruction Set Descriptions5-478 SWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] push(src1, src2) Yes 2 1 X

Opcode 0011 100E FSSS FDDD
Note: FSSS = src1, FDDD = src2

Operands src1, src2

Description This instruction decrements SP by 2, then moves the content of the source
register src1 to the 16-bit data memory location pointed by SP and moves the
content of the source register src2 to the 16-bit data memory location pointed
by SP + 1.

When the source register, src1 or src2, is an accumulator, the source
accumulator low part, ACx(15−0), is moved to the 16-bit data memory
operand.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

push(AR0, AC1) The data stack pointer (SP) is decremented by 2. The content of AR0 is copied to the
memory location pointed by SP and the content of AC1(15–0) is copied to the
memory location pointed by SP + 1.

Before After

AR0 0300 AR0 0300

AC1 03 5644 F800 AC1 03 5644 F800

SP 0300 SP 02FE

2FE 0000 2FE 0300

2FF 0000 2FF F800

300 5890 300 5890

 Push to Top of Stack (push) PSH

5-479Instruction Set DescriptionsSWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] push(src) Yes 2 1 X

Opcode 0101 000E FSSS x110

Operands src

Description This instruction decrements SP by 1, then moves the content of the source
register (src) to the 16-bit data memory location pointed by SP. When the
source register is an accumulator, the source accumulator low part,
ACx(15−0), is moved to the 16-bit data memory operand.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated with a single conditional or unconditional
repeat instruction. It can be repeated in other repeat instructions.

Example

Syntax Description

push(AC0) The data stack pointer (SP) is decremented by 1. The content of AC0(15–0) is copied
to the memory location pointed by SP.

PSH Push to Top of Stack (push)

Instruction Set Descriptions5-480 SWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] push(src, Smem) No 3 1 X

Opcode 1110 0100 AAAA AAAI FSSS x0xx

Operands Smem, src

Description This instruction decrements SP by 2, then moves the content of the source
register (src) to the 16-bit data memory location pointed by SP and moves the
content of the data memory (Smem) location to the 16-bit data memory
location pointed by SP + 1.

When the source register is an accumulator, the source accumulator low part,
ACx(15−0), is moved to the 16-bit data memory operand.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

push(AC0, *AR3) The data stack pointer (SP) is decremented by 2. The content of AC0(15–0) is copied
to the memory location pointed by SP and the content addressed by AR3 is copied
to the memory location pointed by SP + 1.

 Push to Top of Stack (push) PSH

5-481Instruction Set DescriptionsSWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dbl(push(ACx)) Yes 2 1 X

Opcode 0101 000E xxSS x111

Operands ACx

Description This instruction decrements SP by 2, then moves the content of the
accumulator high part ACx(31–16) to the 16-bit data memory location pointed
by SP and moves the content of the accumulator low part ACx(15–0) to the
16-bit data memory location pointed by SP + 1.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated with a single conditional or unconditional
repeat instruction. It can be repeated in other repeat instructions.

Example

Syntax Description

dbl(push(AC0)) The data stack pointer (SP) is decremented by 2. The content of AC0(31–16) is
copied to the memory location pointed by SP and the content of AC0(15–0) is copied
to the memory location pointed by SP + 1.

PSH Push to Top of Stack (push)

Instruction Set Descriptions5-482 SWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] push(Smem) No 2 1 X

Opcode 1011 0101 AAAA AAAI

Operands Smem

Description This instruction decrements SP by 1, then moves the content of the data
memory (Smem) location to the 16-bit data memory location pointed by SP.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

push(*AR1) The data stack pointer (SP) decremented by 1. The content addressed by AR1 is
copied to the memory location pointed by SP.

Before After

*AR1 6903 *AR1 6903

SP 0305 SP 0304

304 0000 304 6903

305 0300 305 0300

 Push to Top of Stack (push) PSH

5-483Instruction Set DescriptionsSWPU068E

Push to Top of Stack

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] push(dbl(Lmem)) No 2 1 X

Opcode 1011 0111 AAAA AAAI

Operands Lmem

Description This instruction decrements SP by 2, then moves the 16 highest bits of data
memory location Lmem to the 16-bit data memory location pointed by SP and
moves the 16 lowest bits of data memory location Lmem to the 16-bit data
memory location pointed by SP + 1.

When Lmem is at an even address, the two 16-bit values pushed onto the
stack are stored at memory location Lmem in the same order. When Lmem is
at an odd address, the two 16-bit values pushed onto the stack are stored at
memory location Lmem in the reverse order.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

push(dbl(*AR3–)) The data stack pointer (SP) is decremented by 2. The 16 highest bits of the content
at the location addressed by AR3 are copied to the memory location pointed by SP
and the 16 lowest bits of the content at the location addressed by AR3 are copied to
the memory location pointed by SP + 1. Because this instruction is a long-operand
instruction, AR3 is decremented by 2 after the execution.

RPTB Repeat Block of Instructions Unconditionally

Instruction Set Descriptions5-484 SWPU068E

Repeat Block of Instructions UnconditionallyRPTB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] localrepeat{} Yes 2 1 AD

[2] blockrepeat{} Yes 3 1 AD

Description These instructions repeat a block of instructions the number of times specified by:

� The content of BRC0 + 1, if no loop has already been detected.

� The content of BRS1 + 1, if one level of the loop has already been
detected.

Loop structures defined by these instructions must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� Since the result of updating BRCx (and BRAF in C54CM = 1) within 3
instruction cycles from the end of the loop is uncertain (effective in the
same iteration or the next iteration depending on the pipeline state), this
operation is prohibited.

� The block-repeat operation can only be cleared by branching to a
destination address outside the active block-repeat loop.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

These instructions cannot be repeated.

See section 1.5 for a list of instructions that cannot be used in a repeat block
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Repeat Single Instruction Conditionally

� Repeat Single Instruction Unconditionally

� Repeat Single Instruction Unconditionally and Decrement CSR

� Repeat Single Instruction Unconditionally and Increment CSR

 Repeat Block of Instructions Unconditionally (localrepeat) RPTB

5-485Instruction Set DescriptionsSWPU068E

Repeat Block of Instructions Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] localrepeat{} Yes 2 1 AD

Opcode 0100 101E 1lll llll

Operands none

Description This instruction repeats a block of instructions the number of times specified by:

� The content of BRC0 + 1, if no loop has already been detected. In this
case:

� In the address phase of the pipeline, RSA0 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA0.

� BRC0 is decremented at the decode phase of the last instruction of the
loop when its content is not equal to 0.

� BRC0 contains 0 after the block-repeat operation has ended.

� The content of BRS1 + 1, if one level of the loop has already been
detected. In this case:

� BRC1 is loaded with the content of BRS1 in the address phase of the
repeat block instruction.

� In the address phase of the pipeline, RSA1 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA1.

� BRC1 is decremented at the decode phase of the last instruction of the
loop when its content is not equal to 0.

� BRC1 contains 0 after the block-repeat operation has ended.

� BRS1 content is not impacted by the block-repeat operation.

RPTB Repeat Block of Instructions Unconditionally (localrepeat)

Instruction Set Descriptions5-486 SWPU068E

Loop structures defined by this instruction must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� The maximum loop size is 128 bytes.

� Since the result of updating BRCx (and BRAF in C54CM = 1) within 3
instruction cycles from the end of the loop is uncertain (effective in the
same iteration or the next iteration depending on the pipeline state), this
operation is prohibited.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

� The following instructions cannot be used as the last instruction in the loop
structure:

while (cond && (RPTC < k8)) repeat repeat(k8) repeat(CSR), CSR += k4

if (cond) execute(AD_Unit) repeat(k16) repeat(CSR), CSR += TAx

if (cond) execute(D_Unit) repeat(CSR) repeat(CSR), CSR –= k4

Note:

Instructions if (cond) execute (AD_Unit), or if (cond) execute (D_Unit) can be
used as the last instruction in the loop structure if the instruction is executed
with the instruction with which it is paralleled (if (cond) execute (AD_Unit) ||
instruction_executes conditionally)

A local loop is defined as when all the code of the loop is repeatedly executed
from within the instruction buffer queue (IBQ):

� All the code of the local loop must fit within the 128-byte, 4-byte-aligned
IBQ; therefore, local repeat blocks are limited to 128 bytes minus the 0 to 3
bytes of first-instruction misalignment. The 128th byte of the IBQ can only
occur in a paralleled instruction. See Figure 5−2 for legal uses of the
localrepeat instruction.

� The following instructions cannot be used in any form in a local loop code:

blockrepeat call goto

idle intr reset

return trap

� Nested local repeat block instructions are allowed.

 Repeat Block of Instructions Unconditionally (localrepeat) RPTB

5-487Instruction Set DescriptionsSWPU068E

� The only branch instructions allowed in a localrepeat structure are the
branch conditionally instructions (if (cond) goto) with a target branch
address pointing to an instruction included within the loop code and being
at a higher address than the branching instruction. In this case, the branch
conditionally instruction is executed in 3 cycles and the condition is
evaluated in the read phase of the pipeline (there is a 1-cycle latency on
the condition setting).

Compatibility with C54x devices (C54CM = 1)

When C54CM =1:

� This instruction only uses block-repeat level 0; block-repeat level 1 is
disabled.

� The block-repeat active flag (BRAF) is set to 1. BRAF is cleared to 0 at the
end of the block-repeat operation when BRC0 contains 0.

� You can stop an active block-repeat operation by clearing BRAF to 0.

� Block-repeat control registers for level 1 are not used. Nested
block-repeat operations are supported using the C54x convention with
context save/restore and BRAF. When an interrupt is acknowledged,
unlike C54x device, BRAF is captured into CFCT register, and saved to
the stack. You can use a block/local loop instruction in an interrupt without
preserving BRAF (while preserving BRC0, RSA0 and REA0).

� BRAF is automatically cleared to 0 when a far branch (FB) or far call
(FCALL) instruction is executed.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

RPTB Repeat Block of Instructions Unconditionally (localrepeat)

Instruction Set Descriptions5-488 SWPU068E

Example

Syntax Description

localrepeat A block of instructions is repeated as defined by the content of BRC0 + 1.

Address BRC0 RSA0 REA0 BRS1

BRC0 = #3 0003 0000 0000 0000

localrepeat { 004003 ?* 4005 400D ?

… … 004005 ? ? ? ?

… … 00400D DTZ** ? ? ?

 } 0000 4005 400D 0000

*?: Unchanged
**DTZ: Decrease till zero

Figure 5−2. Legal Uses of Repeat Block of Instructions Unconditionally (localrepeat)
Instruction

(a) 128-Byte Unaligned Loop—Legal Use

… … ; no alignment directive

localrepeat {

1st instruction

… … } 128-byte loop body

Last instruction

 }

next instruction

… …

The entire localrepeat block and the next instruction reside in the IBQ, this
code is accepted by the assembler.

 Repeat Block of Instructions Unconditionally (localrepeat) RPTB

5-489Instruction Set DescriptionsSWPU068E

Figure 5−2. Legal Uses of Repeat Block of Instructions Unconditionally (localrepeat)
Instruction (Continued)

(b) 129-Byte Unaligned Loop with Single Instruction at End of Loop—Illegal Use

… … ; no alignment directive

localrepeat {

1st instruction

… … } 129-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The localrepeat instruction is not aligned; the next instruction may not be
fetched in the IBQ. Because the last instruction of the localrepeat block is a
nonparalleled (single) instruction, the CPU must confirm that the next
instruction does not have a parallel enable bit; therefore, this code is rejected
by the assembler.

(c) 129-Byte Unaligned Loop with Paralleled Instruction at End of Loop—Legal Use

… … ; no alignment directive

localrepeat {

1st instruction

… … } 129-byte loop body

Last instruction (paralleled)

 }

next instruction

… …

The localrepeat instruction is not aligned; the next instruction may not be
fetched in the IBQ. Because the last instruction of the localrepeat block is a
paralleled instruction, the CPU does not need to confirm that the next
instruction does not have a parallel enable bit; therefore, this code is accepted
by the assembler.

RPTB Repeat Block of Instructions Unconditionally (localrepeat)

Instruction Set Descriptions5-490 SWPU068E

Figure 5−2. Legal Uses of Repeat Block of Instructions Unconditionally (localrepeat)
Instruction (Continued)

(d) 129-Byte Aligned Loop with Single Instruction at End of Loop—Legal Use

align 4 ; alignment directive

localrepeat {

1st instruction

… … } 129-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The localrepeat instruction is aligned, so the entire localrepeat block and the
next instruction reside in the IBQ. Because the next instruction is in the IBQ,
the CPU can confirm that the next instruction does not have a parallel enable
bit; therefore, this code is accepted by the assembler.

(e) 130-Byte Unaligned Loop—Illegal Use

… … ; no alignment directive

localrepeat {

1st instruction

… … } 130-byte loop body

Last instruction

 }

next instruction

… …

The localrepeat instruction is not aligned; the entire localrepeat block may not
reside in the IBQ. Because the last instruction of the localrepeat block may not
reside in the IBQ, this code is rejected by the assembler.

 Repeat Block of Instructions Unconditionally (localrepeat) RPTB

5-491Instruction Set DescriptionsSWPU068E

Figure 5−2. Legal Uses of Repeat Block of Instructions Unconditionally (localrepeat)
Instruction (Continued)

(f) 130-Byte Aligned Loop with Single Instruction at End of Loop—Legal Use

align 4 ; alignment directive

nop_16||nop ; 3-byte instruction

localrepeat {

1st instruction

… … } 130-byte loop body

Last instruction
(nonparalleled = single)

 }

next instruction

… …

The nop instructions are aligned so the localrepeat instruction, the entire
localrepeat block, and the next instruction reside in the IBQ. Because the next
instruction is in the IBQ, the CPU can confirm that the next instruction does not
have a parallel enable bit; therefore, this code is accepted by the assembler.

(g) 132-Byte Aligned Loop with Paralleled Instruction at End of Loop—Legal Use

align 4 ; alignment directive

nop_16 ; 2-byte instruction

localrepeat {

1st instruction

… … } 132-byte loop body

Last instruction (paralleled)

 }

next instruction

… …

The nop instruction is aligned, so the localrepeat instruction and the entire
localrepeat block reside in the IBQ; the next instruction is not fetched in the
IBQ. Because the last instruction of the localrepeat block is a paralleled
instruction, the CPU does not need to confirm that the next instruction does
not have a parallel enable bit; therefore, this code is accepted by the
assembler.

RPTB Repeat Block of Instructions Unconditionally (blockrepeat)

Instruction Set Descriptions5-492 SWPU068E

Repeat Block of Instructions Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] blockrepeat{} Yes 3 1 AD

Opcode 0000 111E llll llll llll llll

Operands none

Description This instruction repeats a block of instructions the number of times specified by:

� the content of BRC0 + 1, if no loop has already been detected. In this case:

� In the address phase of the pipeline, RSA0 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA0.

� BRC0 is decremented at the decode phase of the last instruction of the
loop when its content is not equal to 0.

� BRC0 contains 0 after the block-repeat operation has ended.

� the content of BRS1 + 1, if one level of the loop has already been detected.
In this case:

� BRC1 is loaded with the content of BRS1 in the address phase of the
repeat block instruction.

� In the address phase of the pipeline, RSA1 is loaded with the program
address of the first instruction of the loop.

� The program address of the last instruction of the loop (that may be
two parallel instructions) is computed in the address phase of the
pipeline and stored in REA1.

� BRC1 is decremented at the decode phase of the last instruction of the
loop when its content is not equal to 0.

� BRC1 contains 0 after the block-repeat operation has ended.

� BRS1 content is not impacted by the block-repeat operation.

 Repeat Block of Instructions Unconditionally (blockrepeat) RPTB

5-493Instruction Set DescriptionsSWPU068E

Loop structures defined by these instructions must have the following
characteristics:

� The minimum number of instructions executed within one loop iteration is 2.

� The minimum number of cycles executed within one loop iteration is 2.

� The maximum loop size is 64K bytes.

� The block-repeat operation can only be cleared by branching to a
destination address outside the active block-repeat loop.

� Since the result of updating BRCx (and BRAF in C54CM = 1) within 3
instruction cycles from the end of the loop is uncertain (effective in the
same iteration or the next iteration depending on the pipeline state), this
operation is prohibited.

� C54CM bit in ST1_55 cannot be modified within a block-repeat loop.

� The following instructions cannot be used as the last instruction in the loop
structure:

while (cond && (RPTC < k8)) repeat repeat(k8) repeat(CSR), CSR += k4

if (cond) execute(AD_Unit) repeat(k16) repeat(CSR), CSR += TAx

if (cond) execute(D_Unit) repeat(CSR) repeat(CSR), CSR –= k4

� See section 1.5 for a list of instructions that cannot be used in the
block-repeat loop code.

Compatibility with C54x devices (C54CM = 1)

When C54CM =1:

� This instruction only uses block-repeat level 0; block-repeat level 1 is
disabled.

� The block-repeat active flag (BRAF) is set to 1. BRAF is cleared to 0 at the
end of the block-repeat operation when BRC0 contains 0.

� You can stop an active block-repeat operation by clearing BRAF to 0.

� Block-repeat control registers for level 1 are not used. Nested
block-repeat operations are supported using the C54x convention with
context save/restore and BRAF. The control-flow context register (CFCT)
values are not used.

� BRAF is automatically cleared to 0 when a far branch (FB) or far call
(FCALL) instruction is executed.

RPTB Repeat Block of Instructions Unconditionally (blockrepeat)

Instruction Set Descriptions5-494 SWPU068E

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

blockrepeat A block of instructions is repeated as defined by the content of BRC0 + 1. A second
loop of instructions is repeated as defined by the content of BRS1 + 1 (BRC1 is
loaded with the content of BRS1).

Address BRC0 RSA0 REA0 BRS1 BRC1 RSA1 REA1

BRC0 = #3 0003 0000 0000 0000 0000 0000 0000

BRC1 = #1 ?* ? ? 0001 0001 ? ?

blockrepeat { 004006 ? 4009 4017 ? ? ? ?

… … 004009 ? ? ? ? ? ? ?

localrepeat { 00400B ? ? ? ? (BRS1) 400D 4015

… … 00400D ? ? ? ? ? ? ?

… … 004015 ? ? ? ? DTZ** ? ?

 }

… … 004017 DTZ** ? ? ? ? ? ?

 } 0000 4009 4017 0001 0000 400D 4015
*?: Unchanged
**DTZ: Decrease till zero

 Repeat Single Instruction Conditionally (while/repeat) RPTCC

5-495Instruction Set DescriptionsSWPU068E

Repeat Single Instruction ConditionallyRPTCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] while (cond && (RPTC < k8)) repeat Yes 3 1 AD

Opcode 0000 000E xCCC CCCC kkkk kkkk

Operands cond, k8

Description This instruction evaluates a single condition defined by the cond field and as
long as the condition is true, the next instruction or the next two paralleled
instructions is repeated the number of times specified by an 8-bit immediate
value, k8 + 1. The maximum number of executions of a given instruction or
paralleled instructions is 28 –1 (255). See Table 1−3 for a list of conditions.

The 8 LSBs of the repeat counter register (RPTC):

� Are loaded with the immediate value at the address phase of the pipeline.

� Are decremented by 1 in the decode phase of the repeated instruction.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

The 8 MSBs of RPTC:

� Are loaded with the cond code at the address phase of the pipeline.

� Are untouched during the while/repeat structure execution.

At each step of the iteration, the condition defined by the cond field is tested
in the execute phase of the pipeline. When the condition becomes false, the
instruction repetition stops.

� If the condition becomes false at any execution of the repeated instruction,
the 8 LSBs of RPTC are corrected to indicate exactly how many iterations
were not performed.

� Since the condition is evaluated in the execute phase of the repeated
instruction, when the condition is tested false, some of the succeeding
iterations of that repeated instruction may have gone through the address,
access, and read phases of the pipeline. Therefore, they may have
modified the pointer registers used in the DAGEN units to generate data
memory operands addresses in the address phase.

RPTCC Repeat Single Instruction Conditionally (while/repeat)

Instruction Set Descriptions5-496 SWPU068E

When the while/repeat structure is exited, reading the computed
single-repeat register (CSR) content enables you to determine how many
instructions have gone through the address phase of the pipeline. You
may then use the Repeat Single Instruction Unconditionally instruction [3]
to rewind the pointer registers. Note that this must only be performed when
a false condition has been met inside the while/repeat structure.

� The following table provides the 8 LSBs of RPTC and CSR once the
while/repeat structure is exited.

If the condition is not met RPTC[7:0] content
after exiting loop

CSR content after
exiting loop

At 1st iteration RPTCinit + 1 4

At 2nd iteration RPTCinit 4

At 3rd iteration RPTC – 1 4

… … …
At RPTCinit – 2 iteration 4 3

At RPTCinit – 1 iteration 3 2

At RPTCinit iteration 2 1

At RPTCinit + 1 iteration 1 0

Never 0 0

RPTCinit is the number of requested iterations minus 1.

The repeat single mechanism triggered by this instruction is interruptible.
Saving and restoring the RPTC content in ISRs enables you to preserve the
while/repeat structure context.

Instead of programming a number of iterations (minus 1) equal to 0, it is
recommended that you use the conditional execute() structure.

This instruction cannot be used as the last or the second to last instruction in
a repeat loop structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

In addition, any store−to−memory instruction including push instructions
cannot be used in a conditional repeat single mechanism.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

 Repeat Single Instruction Conditionally (while/repeat) RPTCC

5-497Instruction Set DescriptionsSWPU068E

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Repeat Block of Instructions Unconditionally

� Repeat Single Instruction Unconditionally

� Repeat Single Instruction Unconditionally and Decrement CSR

� Repeat Single Instruction Unconditionally and Increment CSR

Example

Syntax Description

while (AC1 > #0 && (RPTC < #7)) repeat As long as the content of AC1 is greater than 0 and the repeat
counter is not equal to 0, the next single instruction is repeated as
defined by the unsigned 8-bit value (7) + 1. At the address phase
of the pipeline, RPTC is automatically initialized to 4107h and then
is immediately decreased to 4106h.

while (AC1 > #0 && (RPTC < #7)) repeat address: 004004

AC1 = AC1 − (T0 * *AR1) 004008

… … 00400B

Before After

AC1 00 2359 0340 AC1 00 1FC2 7B40

T0 0340 T0 0340

*AR1 2354 *AR1 2354

RPTC 4106† RPTC 0000
† At the address phase of the pipeline, RPTC is automatically initialized to 4107h and then is immediately decreased to 4106h.

RPT Repeat Single Instruction Unconditionally (repeat)

Instruction Set Descriptions5-498 SWPU068E

Repeat Single Instruction UnconditionallyRPT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] repeat(k8) Yes 2 1 AD

[2] repeat(k16) Yes 3 1 AD

[3] repeat(CSR) Yes 2 1 AD

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1 or an immediate value, kx + 1. This value is
loaded into the repeat counter register (RPTC). The maximum number of
executions of a given instruction or paralleled instructions is 216 –1 (65535).

The repeat single mechanism triggered by these instructions is interruptible.

These instructions cannot be repeated.

These instructions cannot be used as the last instruction in a repeat loop
structure.

Two paralleled instructions can be repeated when following the parallelism
general rules.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Repeat Block of Instructions Unconditionally

� Repeat Single Instruction Conditionally

� Repeat Single Instruction Unconditionally and Decrement CSR

� Repeat Single Instruction Unconditionally and Increment CSR

 Repeat Single Instruction Unconditionally (repeat) RPT

5-499Instruction Set DescriptionsSWPU068E

Repeat Single Instruction Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] repeat(k8) Yes 2 1 AD

[2] repeat(k16) Yes 3 1 AD

Opcode k8 0100 110E kkkk kkkk

k16 0000 110E kkkk kkkk kkkk kkkk

Operands kx

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by an immediate value, kx + 1. The
repeat counter register (RPTC):

� Is loaded with the immediate value in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

RPT Repeat Single Instruction Unconditionally (repeat)

Instruction Set Descriptions5-500 SWPU068E

Example 1

Syntax Description

repeat(#3)

AC1 = AC1 + *AR3+ * *AR4+

The single instruction following the repeat instruction is repeated four times.

Before After

AC1 00 0000 0000 AC1 00 3376 AD10

AR3 0200 AR3 0204

AR4 0400 AR4 0404

200 AC03 200 AC03

201 3468 201 3468

202 FE00 202 FE00

203 23DC 203 23DC

400 D768 400 D768

401 6987 401 6987

402 3400 402 3400

403 7900 403 7900

Example 2

Syntax Description

repeat(#513) A single instruction is repeated as defined by the unsigned 16-bit value + 1 (513 + 1).

 Repeat Single Instruction Unconditionally (repeat) RPT

5-501Instruction Set DescriptionsSWPU068E

Repeat Single Instruction Unconditionally

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] repeat(CSR) Yes 2 1 AD

Opcode 0100 100E xxxx x000

Operands none

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

RPT Repeat Single Instruction Unconditionally (repeat)

Instruction Set Descriptions5-502 SWPU068E

Example

Syntax Description

repeat(CSR)

AC1 = AC1 + *AR3+ * *AR4+

The single instruction following the repeat instruction is repeated as defined
by the content of CSR + 1.

Before After

AC1 00 0000 0000 AC1 00 3376 AD10

CSR 0003 CSR 0003

AR3 0200 AR3 0204

AR4 0400 AR4 0404

200 AC03 200 AC03

201 3468 201 3468

202 FE00 202 FE00

203 23DC 203 23DC

400 D768 400 D768

401 6987 401 6987

402 3400 402 3400

403 7900 403 7900

 Repeat Single Instruction Unconditionally and Decrement CSR (repeat) RPTSUB

5-503Instruction Set DescriptionsSWPU068E

Repeat Single Instruction Unconditionally and Decrement CSRRPTSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] repeat(CSR), CSR –= k4 Yes 2 1 X

Opcode 0100 100E kkkk x011

Operands k4

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

With the A-unit ALU, this instruction allows the content of CSR to be
decremented by k4. The CSR modification is performed in the execute phase
of the pipeline; there is a 3-cycle latency between the CSR modification and
its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

RPTSUB Repeat Single Instruction Unconditionally and Decrement CSR (repeat)

Instruction Set Descriptions5-504 SWPU068E

See Also See the following other related instructions:

� Repeat Block of Instructions Unconditionally

� Repeat Single Instruction Conditionally

� Repeat Single Instruction Unconditionally

� Repeat Single Instruction Unconditionally and Increment CSR

Example

Syntax Description

repeat(CSR), CSR –= #2 A single instruction is repeated as defined by the content of CSR + 1. The
content of CSR is decremented by the unsigned 4-bit value (2).

 Repeat Single Instruction Unconditionally and Increment CSR (repeat) RPTADD

5-505Instruction Set DescriptionsSWPU068E

Repeat Single Instruction Unconditionally and Increment CSRRPTADD

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] repeat(CSR), CSR += TAx Yes 2 1 X

[2] repeat(CSR), CSR –= k4 Yes 2 1 X

Description These instructions repeat the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. This value is loaded into the repeat counter
register (RPTC). The maximum number of executions of a given instruction or
paralleled instructions is 216 –1 (65535).

With the A-unit ALU, these instructions allow the content of CSR to be
incremented. The CSR modification is performed in the execute phase of the
pipeline; there is a 3-cycle latency between the CSR modification and its usage
in the address phase.

The repeat single mechanism triggered by these instructions is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

These instructions cannot be repeated.

These instructions cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Repeat Block of Instructions Unconditionally

� Repeat Single Instruction Conditionally

� Repeat Single Instruction Unconditionally

� Repeat Single Instruction Unconditionally and Decrement CSR

RPTADD Repeat Single Instruction Unconditionally and Increment CSR (repeat)

Instruction Set Descriptions5-506 SWPU068E

Repeat Single Instruction Unconditionally and Increment CSR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] repeat(CSR), CSR += TAx Yes 2 1 X

Opcode 0100 100E FSSS x001

Operands TAx

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

With the A-unit ALU, this instruction allows the content of CSR to be
incremented by the content of TAx. The CSR modification is performed in the
execute phase of the pipeline; there is a 3-cycle latency between the CSR
modification and its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

repeat(CSR), CSR += T1 A single instruction is repeated as defined by the content of CSR + 1. The
content of CSR is incremented by the content of temporary register T1.

 Repeat Single Instruction Unconditionally and Increment CSR (repeat) RPTADD

5-507Instruction Set DescriptionsSWPU068E

Repeat Single Instruction Unconditionally and Increment CSR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] repeat(CSR), CSR += k4 Yes 2 1 X

Opcode 0100 100E kkkk x010

Operands k4

Description This instruction repeats the next instruction or the next two paralleled
instructions the number of times specified by the content of the computed
single repeat register (CSR) + 1. The repeat counter register (RPTC):

� Is loaded with CSR content in the address phase of the pipeline.

� Is decremented by 1 in the decode phase of the repeated instruction.

� Contains 0 at the end of the repeat single mechanism.

� Must not be accessed when it is being decremented in the repeat single
mechanism or in parallel with the repeat instruction itself.

With the A-unit ALU, this instruction allows the content of CSR to be
incremented by k4. The CSR modification is performed in the execute phase
of the pipeline; there is a 3-cycle latency between the CSR modification and
its usage in the address phase.

The repeat single mechanism triggered by this instruction is interruptible.

Two paralleled instructions can be repeated when following the parallelism
general rules.

This instruction cannot be used as the last instruction in a repeat loop
structure.

See section 1.5 for a list of instructions that cannot be used in a repeat single
mechanism.

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

Example

Syntax Description

repeat(CSR), CSR += #2 A single instruction is repeated as defined by the content of CSR + 1. The
content of CSR is incremented by the unsigned 4-bit value (2).

RETCC Return Conditionally (if return)

Instruction Set Descriptions5-508 SWPU068E

Return ConditionallyRETCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles† Pipeline

[1] if (cond) return Yes 3 5/5 R

† x/y cycles: x cycles = condition true, y cycles = condition false

Opcode 0000 001E xCCC CCCC xxxx xxxx

Operands cond

Description This instructions evaluates a single condition defined by the cond field in the
read phase of the pipeline. If the condition is true, a return occurs to the return
address of the calling subroutine. There is a 1-cycle latency on the condition
setting. A single condition can be tested as determined by the cond field of the
instruction. See Table 1−3 for a list of conditions.

After returning from a called subroutine, the CPU restores the value of two
internal registers: the program counter (PC) and a loop context register. The
CPU uses these values to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are restored from the stacks (in memory). When the CPU
returns from a subroutine, the speed at which these values are restored is
dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. For fast-
return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

When a return from a subroutine occurs:

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the read phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the read phase of
the pipeline.

 Return Conditionally (if return) RETCC

5-509Instruction Set DescriptionsSWPU068E

System Stack (SSP) Data Stack (SP)

Before
Return

→ SSP = x (Loop bits):PC(23−16) Before
Return

→ SP = y PC(15−0)

After
Return

→ SSP = x + 1 Previously stored data After
Return

→ SP = y + 1 Previously stored dataAfter
Return

After
Return

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, the comparison of accumulators to 0 is performed as if M40
was set to 1.

Status Bits Affected by ACOVx, CARRY, C54CM, M40, TCx

Affects ACOVx

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Call Conditionally

� Call Unconditionally

� Return from Interrupt

� Return Unconditionally

Example

Syntax Description

if (ACOV0 = #0) return The AC0 overflow bit is equal to 0, the program counter (PC) is loaded with the return
address of the calling subroutine.

Before After

ACOV0 0 ACOV0 0

PC PC (return address)

SP SP

RET Return Unconditionally (return)

Instruction Set Descriptions5-510 SWPU068E

Return UnconditionallyRET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] return Yes 2 5 D

Opcode 0100 100E xxxx x100

Operands none

Description This instruction passes control back to the calling subroutine.

After returning from a called subroutine, the CPU restores the value of two
internal registers: the program counter (PC) and a loop context register. The
CPU uses these values to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC) and the
loop context bits are restored from the stacks (in memory). When the CPU
returns from a subroutine, the speed at which these values are restored is
dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. For fast-
return mode operation, see the TMS320C55x DSP CPU Reference Guide
(SPRU371).

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the address phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the address phase
of the pipeline.

System Stack (SSP) Data Stack (SP)

Before
Return

→ SSP = x (Loop bits):PC(23−16) Before
Return

→ SP = y PC(15−0)

After
Return

→ SSP = x + 1 Previously stored data After
Return

→ SP = y + 1 Previously stored dataAfter
Return

After
Return

 Return Unconditionally (return) RET

5-511Instruction Set DescriptionsSWPU068E

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Call Conditionally

� Call Unconditionally

� Return Conditionally

� Return from Interrupt

Example

Syntax Description

return The program counter is loaded with the return address of the calling subroutine.

RETI Return from Interrupt (return_int)

Instruction Set Descriptions5-512 SWPU068E

Return from InterruptRETI

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] return_int No 2 5 D

Opcode 0100 100E xxxx x101

Operands none

Description This instruction passes control back to the interrupted task.

After returning from an interrupt service routine (ISR), the CPU automatically
restores the value of some CPU registers and two internal registers: the
program counter (PC) and a loop context register. The CPU uses these values
to re-establish the context of the program sequence.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are restored from the stacks (in
memory). When the CPU returns from an ISR, the speed at which these values
are restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are restored from the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are restored from the stacks (in memory). For fast-return mode
operation, see the TMS320C55x DSP CPU Reference Guide (SPRU371).

� The loop context bits concatenated with the 8 MSBs of the return address
are popped from the top of the system stack pointer (SSP). The SSP is
incremented by 1 word in the address phase of the pipeline.

� The 16 LSBs of the return address are popped from the top of the data
stack pointer (SP). The SP is incremented by 1 word in the address phase
of the pipeline.

� The debug status register (DBSTAT) content is popped from the top of
SSP. The SSP is incremented by 1 word in the access phase of the
pipeline.

� The status register 1 (ST1_55) content is popped from the top of SP. The
SP is incremented by 1 word in the access phase of the pipeline.

� The 7 higher bits of status register 0 (ST0_55) concatenated with 9 zeroes
are popped from the top of SSP. The SSP is incremented by 1 word in the
read phase of the pipeline.

 Return from Interrupt (return_int) RETI

5-513Instruction Set DescriptionsSWPU068E

� The status register 2 (ST2_55) content is popped from the top of SP. The
SP is incremented by 1 word in the read phase of the pipeline.

System Stack (SSP) Data Stack (SP)

Before
Return

→ SSP = x (Loop bits):PC(23−16) Before
Return

→ SP = y PC(15−0)Before
Return SSP = x + 1 DBSTAT

Before
Return SP = y + 1 ST1_55

SSP = x + 2 ST0_55(15−9) SP = y + 2 ST2_55

After
Return

→ SSP = x + 3 Previously stored data After
Return

→ SP = y + 3 Previously stored dataAfter
Return

After
Return

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Return Conditionally

� Return Unconditionally

� Software Interrupt

� Software Trap

Example

Syntax Description

return_int The program counter (PC) is loaded with the return address of the interrupted task.

ROL Rotate Left Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-514 SWPU068E

Rotate Left Accumulator, Auxiliary, or Temporary Register ContentROL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

dst = BitOut \\ src \\ BitIn

[1] dst = TC2 \\ src \\ TC2 Yes 3 1 X

[2] dst = TC2 \\ src \\ CARRY Yes 3 1 X

[3] dst = CARRY \\ src \\ TC2 Yes 3 1 X

[4] dst = CARRY \\ src \\ CARRY Yes 3 1 X

Opcode 0001 001E FSSS xx11 FDDD 0xvv

Operands dst, src

Description This instruction performs a bitwise rotation to the MSBs. Both TC2 and
CARRY can be used to shift in one bit (BitIn) or to store the shifted out bit
(BitOut). The one bit in BitIn is shifted into the source (src) operand and the
shifted out bit is stored to BitOut.

� When the destination (dst) operand is an accumulator:

� if an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the register are zero extended to 40 bits

� the operation is performed on 40 bits in the D-unit shifter

� BitIn is inserted at bit position 0

� BitOut is extracted at a bit position according to M40

� When the destination (dst) operand is an auxiliary or temporary register:

� if an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation

� the operation is performed on 16 bits in the A-unit ALU

� BitIn is inserted at bit position 0

� BitOut is extracted at bit position 15

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, TC2

Affects CARRY, TC2

 Rotate Left Accumulator, Auxiliary, or Temporary Register Content ROL

5-515Instruction Set DescriptionsSWPU068E

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Rotate Right Accumulator, Auxiliary, or Temporary Register Content

Example

Syntax Description

AC1 = CARRY \\ AC1 \\ TC2 The value of TC2 (1) before the execution of the instruction is shifted into
the LSB of AC1 and bit 31 shifted out from AC1 is stored in the CARRY
status bit. The rotated value is stored in AC1. Because M40 = 0, the
guard bits (39−32) are cleared.

Before After

AC1 0F E340 5678 AC1 00 C680 ACF1

TC2 1 TC2 1

CARRY 1 CARRY 1

M40 0 M40 0

ROR Rotate Right Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-516 SWPU068E

Rotate Right Accumulator, Auxiliary, or Temporary Register ContentROR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

dst = BitIn // src // BitOut

[1] dst = TC2 // src // TC2 Yes 3 1 X

[2] dst = TC2 // src // CARRY Yes 3 1 X

[3] dst = CARRY // src // TC2 Yes 3 1 X

[4] dst = CARRY // src // CARRY Yes 3 1 X

Opcode 0001 001E FSSS xx11 FDDD 1xvv

Operands dst, src

Description This instruction performs a bitwise rotation to the LSBs. Both TC2 and CARRY
can be used to shift in one bit (BitIn) or to store the shifted out bit (BitOut). The
one bit in BitIn is shifted into the source (src) operand and the shifted out bit
is stored to BitOut.

� When the destination (dst) operand is an accumulator:

� if an auxiliary or temporary register is the source (src) operand of the
instruction, the 16 LSBs of the register are zero extended to 40 bits

� the operation is performed on 40 bits in the D-unit shifter

� BitIn is inserted at a bit position according to M40

� BitOut is extracted at bit position 0

� When the destination (dst) operand is an auxiliary or temporary register:

� if an accumulator is the source (src) operand of the instruction, the
16 LSBs of the accumulator are used to perform the operation

� the operation is performed on 16 bits in the A-unit ALU

� BitIn is inserted at bit position 15

� BitOut is extracted at bit position 0

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, TC2

Affects CARRY, TC2

 Rotate Right Accumulator, Auxiliary, or Temporary Register Content ROR

5-517Instruction Set DescriptionsSWPU068E

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Rotate Left Accumulator, Auxiliary, or Temporary Register Content

Example

Syntax Description

AC1 = TC2 // AC0 // TC2 The value of TC2 (1) before the execution of the instruction is shifted into
bit 31 of AC0 and the LSB shifted out from AC0 is stored in TC2. The
rotated value is stored in AC1. Because M40 = 0, the guard bits (39−32) are
cleared.

Before After

AC0 5F B000 1234 AC0 5F B000 1234

AC1 00 C680 ACF1 AC1 00 D800 091A

TC2 1 TC2 0

M40 0 M40 0

ROUND Round Accumulator Content (rnd)

Instruction Set Descriptions5-518 SWPU068E

Round Accumulator ContentROUND

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACx) Yes 2 1 X

Opcode 0101 010E DDSS 101%

Operands ACx, ACy

Description This instruction performs a rounding of the source accumulator ACx in the
D-unit ALU.

� The rounding operation depends on RDM:

� When RDM = 0, the biased rounding to the infinite is performed.
8000h (215) is added to the 40-bit source accumulator ACx.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit source
accumulator ACx, 8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit source accumulator ACx

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit source accumulator ACx

If a rounding has been performed, the 16 lowest bits of the result are
cleared to 0.

� Addition overflow detection depends on M40.

� No addition carry report is stored in CARRY status bit.

� If an overflow is detected, the destination accumulator overflow status bit
(ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the LSBs of
accumulator ACx.

 Round Accumulator Content (rnd) ROUND

5-519Instruction Set DescriptionsSWPU068E

Status Bits Affected by C54CM, M40, RDM, SATD

Affects ACOVy

Repeat This instruction cannot be repeated.

Example

Syntax Description

AC1 = rnd(AC0) The content of AC0 is added to 8000h, the 16 LSBs are cleared to 0, and the result
is stored in AC1. M40 is cleared to 0, so overflow is detected at bit 31; SATD is cleared
to 0, so AC1 is not saturated.

Before After

AC0 EF 0FF0 8023 AC0 EF 0FF0 8023

AC1 00 0000 0000 AC1 EF 0FF1 0000

RDM 1 RDM 1

M40 0 M40 0

SATD 0 SATD 0

ACOV1 0 ACOV1 1

SAT Saturate Accumulator Content (saturate)

Instruction Set Descriptions5-520 SWPU068E

Saturate Accumulator ContentSAT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = saturate(rnd(ACx)) Yes 2 1 X

Opcode 0101 010E DDSS 110%

Operands ACx, ACy

Description This instruction performs a saturation of the source accumulator ACx to the
32-bit width frame in the D-unit ALU.

� A rounding is performed if the optional rnd keyword is applied to the
instruction. The rounding operation depends on RDM:

� When RDM = 0, the biased rounding to the infinite is performed.
8000h (215) is added to the 40-bit source accumulator ACx.

� When RDM = 1, the unbiased rounding to the nearest is performed.
According to the value of the 17 LSBs of the 40-bit source
accumulator ACx, 8000h (215) is added:

if(8000h < bit(15–0) < 10000h)

add 8000h to the 40-bit source accumulator ACx

else if(bit(15–0) == 8000h)

if(bit(16) == 1)

add 8000h to the 40-bit source accumulator ACx

If a rounding has been performed, the 16 lowest bits of the result are
cleared to 0.

� An overflow is detected at bit position 31.

� No addition carry report is stored in CARRY status bit.

� If an overflow is detected, the destination accumulator overflow status bit
(ACOVy) is set.

� When an overflow is detected, the destination register is saturated.
Saturation values are 00 7FFF FFFFh (positive overflow) or
FF 8000 0000h (negative overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the rounding is performed without clearing the LSBs of
accumulator ACx.

 Saturate Accumulator Content (saturate) SAT

5-521Instruction Set DescriptionsSWPU068E

Status Bits Affected by C54CM, RDM

Affects ACOVy

Repeat This instruction can be repeated.

Example 1

Syntax Description

AC1 = saturate(AC0) The 32-bit width content of AC0 is saturated and the saturated value, FF 8000 0000,
is stored in AC1.

Before After

AC0 EF 0FF0 8023 AC0 EF 0FF0 8023

AC1 00 0000 0000 AC1 FF 8000 0000

ACOV1 0 ACOV1 1

Example 2

Syntax Description

AC1 = satu-
rate(rnd(AC0))

The 32-bit width content of AC0 is saturated. The saturated value, 00 7FFF FFFFh,
is rounded, 16 LSBs are cleared, and stored in AC1.

Before After

AC0 00 7FFF 8000 AC0 00 7FFF 8000

AC1 00 0000 0000 AC1 00 7FFF 0000

RDM 0 RDM 0

ACOV1 0 ACOV1 1

BSET Set Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-522 SWPU068E

Set Accumulator, Auxiliary, or Temporary Register BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(src, Baddr) = #1 No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 000x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction sets to 1 a single bit, as defined by the bit addressing mode,
Baddr, of the source register.

The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, the selected register bit value does not change.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Set Memory Bit

� Set Status Register Bit

Example

Syntax Description

bit(AC0, AR3) = #1 The bit at the position defined by the content of AR3(4–0) in AC0 is set to 1.

 Set Memory Bit BSET

5-523Instruction Set DescriptionsSWPU068E

Set Memory BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(Smem, src) = #1 No 3 1 X

Opcode 1110 0011 AAAA AAAI FSSS 1100

Operands Smem, src

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
sets to 1 a single bit, as defined by the content of the source (src) operand, of
a memory (Smem) location.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Memory Bit

� Set Accumulator, Auxiliary, or Temporary Register Bit

� Set Status Register Bit

Example

Syntax Description

bit(*AR3, AC0) = #1 The bit at the position defined by AC0(3–0) in the content addressed by AR3 is set
to 1.

BSET Set Status Register Bit

Instruction Set Descriptions5-524 SWPU068E

Set Status Register BitBSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(ST0, k4) = #1 Yes 2 1 X

[2] bit(ST1, k4) = #1 Yes 2 1 X

[3] bit(ST2, k4) = #1 Yes 2 1 X

[4] bit(ST3, k4) = #1 Yes 2 1† X

† When this instruction is decoded to modify status bit CAFRZ (15), CAEN (14), or CACLR (13), the CPU pipeline is flushed
and the instruction is executed in 5 cycles regardless of the instruction context.

Opcode ST0 0100 011E kkkk 0001

ST1 0100 011E kkkk 0011

ST2 0100 011E kkkk 0101

ST3 0100 011E kkkk 0111

Operands k4, STx

Description These instructions perform a bit manipulation in the A-unit ALU.

These instructions set to 1 a single bit, as defined by a 4-bit immediate value,
k4, in the selected status register (ST0, ST1, ST2, or ST3).

It is not allowed to access DP register mapped in ST0 register with
bit(ST0, k4) = #1 instruction. Therefore, k4 cannot have a value of 0−8.

It is not allowed to access ASM bit field in ST1 with bit(ST1, k4) = #1 instruction.
Therefore, k4 cannot have a value of 0−4.

Compatibility with C54x devices (C54CM = 1)

C55x DSP status registers bit mapping (Figure 5−3, page 5-526) does not
correspond to C54x DSP status register bits.

Status Bits Affected by none

Affects Selected status bits

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Clear Status Register Bit

 Set Status Register Bit BSET

5-525Instruction Set DescriptionsSWPU068E

� Set Accumulator, Auxiliary, or Temporary Register Bit

� Set Memory Bit

Example

Syntax Description

bit(ST0, ST0_CARRY) = #1; ST0_CARRY = bit 11 The ST0 bit position defined by the label (ST0_CARRY,
bit 11) is set to 1.

Before After

ST0 0000 ST0 0800

BSET Set Status Register Bit

Instruction Set Descriptions5-526 SWPU068E

Figure 5−3. Status Registers Bit Mapping

ST0_55

15 14 13 12 11 10 9

ACOV2† ACOV3† TC1† TC2 CARRY ACOV0 ACOV1

R/W−0 R/W−0 R/W−1 R/W−1 R/W−1 R/W−0 R/W−0

8 0

DP

R/W−0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40† SATD SXMD

R/W−0 R/W−0 R/W−1 R/W−0 R/W−1 R/W−0 R/W−0 R/W−1

7 6 5 4 0

C16 FRCT C54CM† ASM

R/W−0 R/W−0 R/W−1 R/W−0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

R/W−0 R/W−1 R/W−0 R/W−0 R/W−0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0 R/W−0

ST3_55

15 14 13 12 11 8

CAFRZ† CAEN† CACLR† HINT‡ Reserved (always write 1100b)

R/W−0 R/W−0 R/W−0 R/W−1

7 6 5 4 3 2 1 0

CBERR† MPNMC§ SATA† Reserved CLKOFF SMUL SST

R/W−0 R/W−pins R/W−0 R/W−0 R/W−0 R/W−0

Legend: R = Read; W = Write; -n = Value after reset
† Highlighted bit: If you write to the protected address of the status register, a write to this bit has no effect, and the bit always

appears as a 0 during read operations.
‡ The HINT bit is not used for all C55x host port interfaces (HPIs). Consult the documentation for the specific C55x DSP.
§ The reset value of MPNMC may be dependent on the state of predefined pins at reset. To check this for a particular C55x DSP,

see the boot loader section of its data sheet.

 Shift Accumulator Content Conditionally (sftc) SFTCC

5-527Instruction Set DescriptionsSWPU068E

Shift Accumulator Content ConditionallySFTCC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACx = sftc(ACx, TC1) Yes 2 1 X

[2] ACx = sftc(ACx, TC2) Yes 2 1 X

Opcode TC1 0101 101E DDxx xx10

TC2 0101 101E DDxx xx11

Operands ACx, TCx

Description If the source accumulator ACx(39–0) is equal to 0, this instruction sets the TCx
status bit to 1.

If the source accumulator ACx(31–0) has two sign bits:

� this instruction shifts left the 32-bit accumulator ACx by 1 bit

� the TCx status bit is cleared to 0

If the source accumulator ACx(31–0) does not have two sign bits, this
instruction sets the TCx status bit to 1.

The sign bits are extracted at bit positions 31 and 30.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Shift Accumulator Content Logically

� Shift Accumulator, Auxiliary, or Temporary Register Content Logically

� Signed Shift of Accumulator Content

� Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

SFTCC Shift Accumulator Content Conditionally (sftc)

Instruction Set Descriptions5-528 SWPU068E

Example 1

Syntax Description

AC0 = sftc(AC0, TC1) Because AC0(31) XORed with AC0(30) equals 1, the content of AC0 is not shifted
left and TC1 is set to 1.

Before After

AC0 FF 8765 0055 AC0 FF 8765 0055

TC1 0 TC1 1

Example 2

Syntax Description

AC0 = sftc(AC0, TC2) Because AC0(31) XORed with AC0(30) equals 0, the content of AC0 is shifted left
by 1 bit and TC2 is cleared to 0.

Before After

AC0 00 1234 0000 AC0 00 2468 0000

TC2 0 TC2 0

 Shift Accumulator Content Logically SFTL

5-529Instruction Set DescriptionsSWPU068E

Shift Accumulator Content LogicallySFTL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ACx <<< Tx Yes 2 1 X

[2] ACy = ACx <<< #SHIFTW Yes 3 1 X

Description These instructions perform an unsigned shift by an immediate value, SHIFTW,
or the content of a temporary register (Tx) in the D-unit shifter.

Status Bits Affected by C54CM, M40

Affects CARRY

See Also See the following other related instructions:

� Shift Accumulator Content Conditionally

� Shift Accumulator, Auxiliary, or Temporary Register Content Logically

� Signed Shift of Accumulator Content

� Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

SFTL Shift Accumulator Content Logically

Instruction Set Descriptions5-530 SWPU068E

Shift Accumulator Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ACx <<< Tx Yes 2 1 X

Opcode 0101 110E DDSS ss00

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content and stores the shifted-out bit in the CARRY status bit. If the
16-bit value contained in Tx is out of the –32 to +31 range, the shift is saturated
to –32 or +31 and the shift operation is performed with this value. However, no
overflow is reported when such saturation occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� The shift operation is performed according to M40.

� The CARRY status bit contains the shifted-out bit. When the shift count is
zero, Tx = 0, the CARRY status bit is cleared to 0.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, the 6 LSBs of Tx define the shift quantity within –32 to +31. When
the value is between –32 to –17, a modulo 16 operation transforms the shift
quantity to within –16 to –1.

Status Bits Affected by C54CM, M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC0 >>> T0 The content of AC0 is logically shifted right by the content of T0 and the result is
stored in AC1. There is a right shift because the content of T0 is negative (−6).
Because M40 = 0, the guard bits (39−32) are cleared.

Before After

AC0 5F B000 1234 AC0 5F B000 1234

AC1 00 C680 ACF0 AC1 00 02C0 0048

T0 FFFA T0 FFFA

M40 0 M40 0

 Shift Accumulator Content Logically SFTL

5-531Instruction Set DescriptionsSWPU068E

Shift Accumulator Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = ACx <<< #SHIFTW Yes 3 1 X

Opcode 0001 000E DDSS 0111 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx) content
and stores the shifted-out bit in the CARRY status bit.

� The operation is performed on 40 bits in the D-unit shifter.

� The shift operation is performed according to M40.

� The CARRY status bit contains the shifted-out bit. When the shift count is
zero, SHIFTW = 0, the CARRY status bit is cleared to 0.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 <<< #31 The content of AC1 is logically shifted left by 31 bits and the result is stored in AC0.

SFTL Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Instruction Set Descriptions5-532 SWPU068E

Shift Accumulator, Auxiliary, or Temporary Register Content LogicallySFTL

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst <<< #1 Yes 2 1 X

[2] dst = dst >>> #1 Yes 2 1 X

Description These instructions perform an unsigned shift by 1 bit:

� In the D-unit shifter, if the destination operand is an accumulator (ACx).

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register (TAx).

Status Bits Affected by C54CM, M40

Affects CARRY

See Also See the following other related instructions:

� Shift Accumulator Content Conditionally

� Shift Accumulator Content Logically

� Signed Shift of Accumulator Content

� Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

 Shift Accumulator, Auxiliary, or Temporary Register Content Logically SFTL

5-533Instruction Set DescriptionsSWPU068E

Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst <<< #1 Yes 2 1 X

Opcode 0101 000E FDDD x000

Operands dst

Description This instruction shifts left by 1 bit the input operand (dst). The CARRY status
bit contains the shifted-out bit.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted at a bit position according to M40.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted at bit position 15 and stored in the
CARRY status bit.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 <<< #1 The content of AC1 is logically shifted left by 1 bit and the result is stored in AC1.
Because M40 = 0, the CARRY status bit is extracted at bit 31 and the guard bits
(39−32) are cleared.

Before After

AC1 8F E340 5678 AC1 00 C680 ACF0

CARRY 0 CARRY 1

M40 0 M40 0

SFTL Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Instruction Set Descriptions5-534 SWPU068E

Shift Accumulator, Auxiliary, or Temporary Register Content Logically

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = dst >>> #1 Yes 2 1 X

Opcode 0101 000E FDDD x001

Operands dst

Description This instruction shifts right by 1 bit the input operand (dst). The CARRY status
bit contains the shifted-out bit.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� 0 is inserted at a bit position according to M40.

� The shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 15.

� The shifted-out bit is extracted at bit position 0 and stored in the
CARRY status bit.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40

Affects CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 >>> #1 The content of AC0 is logically shifted right by 1 bit and the result is stored in AC0.

 Signed Shift of Accumulator Content SFTS

5-535Instruction Set DescriptionsSWPU068E

Signed Shift of Accumulator ContentSFTS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ACx << Tx Yes 2 1 X

[2] ACy = ACx <<C Tx Yes 2 1 X

[3] ACy = ACx << #SHIFTW Yes 3 1 X

[4] ACy = ACx <<C #SHIFTW Yes 3 1 X

Description These instructions perform a signed shift by an immediate value, SHIFTW, or
by the content of a temporary register (Tx) in the D-unit shifter.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Shift Accumulator Content Conditionally

� Shift Accumulator Content Logically

� Shift Accumulator, Auxiliary, or Temporary Register Content Logically

� Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-536 SWPU068E

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = ACx << Tx Yes 2 1 X

Opcode 0101 110E DDSS ss01

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content. If the 16-bit value contained in Tx is out of the –32 to +31 range,
the shift is saturated to –32 or +31 and the shift operation is performed with this
value; a destination accumulator overflow is reported when such saturation
occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the Tx content:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 =0, comparison is performed versus bit 31

� if M40 =1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-537Instruction Set DescriptionsSWPU068E

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� These instructions are executed as if M40 status bit was locally set to 1.

� There is no overflow detection, overflow report, and saturation performed
by the D-unit shifter.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 << T0 The content of AC1 is shifted by the content of T0 and the result is stored in AC0.

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-538 SWPU068E

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = ACx <<C Tx Yes 2 1 X

Opcode 0101 110E DDSS ss10

Operands ACx, ACy, Tx

Description This instruction shifts by the temporary register (Tx) content the accumulator
(ACx) content and stores the shifted-out bit in the CARRY status bit. If the
16-bit value contained in Tx is out of the –32 to +31 range, the shift is saturated
to –32 or +31 and the shift operation is performed with this value; a destination
accumulator overflow is reported when such saturation occurs.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the Tx content:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 =0, comparison is performed versus bit 31

� if M40 =1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40 and stored in the CARRY
status bit. When the shift count is zero, Tx = 0, the CARRY status bit is
cleared to 0.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-539Instruction Set DescriptionsSWPU068E

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1:

� These instructions are executed as if M40 status bit was locally set to 1.

� There is no overflow detection, overflow report, and saturation performed
by the D-unit shifter.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC2 = AC2 <<C T1 The content of AC2 is shifted left by the content of T1 and the saturated result is
stored in AC2. The shifted out bit is stored in the CARRY status bit. Since SATD = 1
and M40 = 0, AC2 = FF 8000 0000 (saturation).

Before After

AC2 80 AA00 1234 AC2 FF 8000 0000

T1 0005 T1 0005

CARRY 0 CARRY 1

M40 0 M40 0

ACOV2 0 ACOV2 1

SXMD 1 SXMD 1

SATD 1 SATD 1

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-540 SWPU068E

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] ACy = ACx << #SHIFTW Yes 3 1 X

Opcode 0001 000E DDSS 0101 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx)
content.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the 6-bit value, SHIFTW:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 =0, comparison is performed versus bit 31

� if M40 =1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-541Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy

Repeat This instruction can be repeated.

Example 1

Syntax Description

AC0 = AC1 << #31 The content of AC1 is shifted left by 31 bits and the result is stored in AC0.

Example 2

Syntax Description

AC0 = AC1 << #–32 The content of AC1 is shifted right by 32 bits and the result is stored in AC0.

SFTS Signed Shift of Accumulator Content

Instruction Set Descriptions5-542 SWPU068E

Signed Shift of Accumulator Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] ACy = ACx <<C #SHIFTW Yes 3 1 X

Opcode 0001 000E DDSS 0110 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction shifts by a 6-bit value, SHIFTW, the accumulator (ACx) content
and stores the shifted-out bit in the CARRY status bit.

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted by the 6-bit value, SHIFTW:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 =0, comparison is performed versus bit 31

� if M40 =1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40 and stored in the CARRY
status bit. When the shift count is zero, SHIFTW = 0, the CARRY status
bit is cleared to 0.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

 Signed Shift of Accumulator Content SFTS

5-543Instruction Set DescriptionsSWPU068E

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVy bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC0 <<C #–5 The content of AC0 is shifted right by 5 bits and the result is stored in AC1. The shifted
out bit is stored in the CARRY status bit.

Before After

AC0 FF 8765 0055 AC0 FF 8765 0055

AC1 00 4321 1234 AC1 FF FC3B 2802

CARRY 0 CARRY 1

SXMD 1 SXMD 1

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-544 SWPU068E

Signed Shift of Accumulator, Auxiliary, or Temporary Register ContentSFTS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst >> #1 Yes 2 1 X

[2] dst = dst << #1 Yes 2 1 X

Description These instructions perform a shift of 1 bit:

� In the D-unit shifter, if the destination operand is an accumulator (ACx).

� In the A-unit ALU, if the destination operand is an auxiliary or temporary
register (TAx).

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

See Also See the following other related instructions:

� Shift Accumulator Content Conditionally

� Shift Accumulator Content Logically

� Shift Accumulator, Auxiliary, or Temporary Register Content Logically

� Signed Shift of Accumulator Content

 Signed Shift of Accumulator, Auxiliary, or Temporary Register Content SFTS

5-545Instruction Set DescriptionsSWPU068E

Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst >> #1 Yes 2 1 X

Opcode 0100 010E 01x0 FDDD

Operands dst

Description This instruction shifts right by 1 bit the content of the destination register (dst).

If the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted right by 1 bit:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� Bit 39 is extended according to SXMD

� The shifted-out bit is extracted at bit position 0.

If the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Bit 15 is sign extended.

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SXMD

Affects none

Repeat This instruction can be repeated.

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-546 SWPU068E

Example

Syntax Description

AC0 = AC0 >> #1 The content of AC0 is shifted right by 1 bit and the result is stored in AC0.

 Signed Shift of Accumulator, Auxiliary, or Temporary Register Content SFTS

5-547Instruction Set DescriptionsSWPU068E

Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = dst << #1 Yes 2 1 X

Opcode 0100 010E 01x1 FDDD

Operands dst

Description This instruction shifts left by 1 bit the content of the destination register (dst).

If the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit shifter.

� When M40 = 0, the input to the shifter is modified according to SXMD and
then the modified input is shifted left by 1 bit:

� if SXMD = 0, 0 is substituted for the guard bits (39−32) as the input,
instead of ACx(39−32), to the shifter

� if SXMD = 1, bit 31 of the source operand is substituted for the guard
bits (39−32) as the input, instead of ACx(39−32), to the shifter

� The sign position of the source operand is compared to the shift quantity.
This comparison depends on M40:

� if M40 =0, comparison is performed versus bit 31

� if M40 =1, comparison is performed versus bit 39

� 0 is inserted at bit position 0.

� The shifted-out bit is extracted according to M40.

� After shifting, unless otherwise noted, when M40 = 0:

� overflow is detected at bit position 31 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 00 7FFF FFFFh (positive
overflow) or FF 8000 0000h (negative overflow)

� After shifting, unless otherwise noted, when M40 = 1:

� overflow is detected at bit position 39 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATD = 1, when an overflow is detected, the destination
accumulator saturation values are 7F FFFF FFFFh (positive
overflow) or 80 0000 0000h (negative overflow)

SFTS Signed Shift of Accumulator, Auxiliary, or Temporary Register Content

Instruction Set Descriptions5-548 SWPU068E

If the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� 0 is inserted at bit position 0.

� After shifting, unless otherwise noted:

� overflow is detected at bit position 15 (if an overflow is detected, the
destination ACOVx bit is set)

� if SATA = 1, when an overflow is detected, the destination register
saturation values are 7FFFh (positive overflow) or 8000h (negative
overflow)

Compatibility with C54x devices (C54CM = 1)

When C54CM = 1, these instructions are executed as if M40 status bit was
locally set to 1. There is no overflow detection, overflow report, and saturation
performed by the D-unit shifter.

Status Bits Affected by C54CM, M40, SATA, SATD, SXMD

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

T2 = T2 << #1 The content of T2 is shifted left by 1 bit and the result is stored in T2.

Before After

T2 EF27 T2 DE4E

SATA 1 SATA 1

 Software Interrupt (intr) INTR

5-549Instruction Set DescriptionsSWPU068E

Software InterruptINTR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] intr(k5) No 2 3 D

Opcode 1001 0101 0xxk kkkk

Operands k5

Description This instruction passes control to a specified interrupt service routine (ISR)
and interrupts are globally disabled (INTM bit is set to 1 after ST1_55 content
is pushed onto the data stack pointer). The ISR address is stored at the
interrupt vector address defined by the content of an interrupt vector pointer
(IVPD or IVPH) combined with the 5-bit constant, k5. This instruction is
executed regardless of the value of INTM bit.

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

Before beginning an ISR, the CPU automatically saves the value of some CPU
registers and two internal registers: the program counter (PC) and a loop
context register. The CPU can use these values to re-establish the context of
the interrupted program sequence when the ISR is done.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are stored to the stacks (in memory).
When the CPU returns from an ISR, the speed at which these values are
restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are saved to the stacks (in memory). For fast-return mode operation,
see the TMS320C55x DSP CPU Reference Guide (SPRU371).

When control is passed to the ISR:

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The status register 2 (ST2_55) content is pushed
to the top of SP.

INTR Software Interrupt (intr)

Instruction Set Descriptions5-550 SWPU068E

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The 7 higher bits of status register 0 (ST0_55)
concatenated with 9 zeroes are pushed to the top of SSP.

� The SP is decremented by 1 word in the access phase of the pipeline. The
status register 1 (ST1_55) content is pushed to the top of SP.

� The SSP is decremented by 1 word in the access phase of the pipeline.
The debug status register (DBSTAT) content is pushed to the top of SSP.

� The SP is decremented by 1 word in the read phase of the pipeline. The
16 LSBs of the return address, from the program counter (PC), of the
called subroutine are pushed to the top of SP.

� The SSP is decremented by 1 word in the read phase of the pipeline. The
loop context bits concatenated with the 8 MSBs of the return address are
pushed to the top of SSP.

� The PC is loaded with the ISR program address. The active control flow
execution context flags are cleared.

When the software interrupt is acknowledged, the corresponding bits in IFR0
and IFR1 are cleared.

System Stack (SSP) Data Stack (SP)

After
Save

→ SSP = x − 3 (Loop bits):PC(23−16) After
Save

→ SP = y − 3 PC(15−0)After
Save SSP = x − 2 DBSTAT

After
Save SP = y − 2 ST1_55

SSP = x − 1 ST0_55(15−9) SP = y − 1 ST2_55

Before
Save

→ SSP = x Previously saved data Before
Save

→ SP = y Previously saved dataBefore
Save

Before
Save

Status Bits Affected by none

Affects INTM, IFR0, IFR1

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Return from Interrupt

� Software Trap

Example

Syntax Description

intr(#3) Program control is passed to the specified interrupt service routine. The interrupt vector address is
defined by the content of an interrupt vector pointer (IVPD) combined with the unsigned 5-bit value (3).

 Software Reset (reset) RESET

5-551Instruction Set DescriptionsSWPU068E

Software ResetRESET

Syntax Characteristics

No. Syntax
Parallel

Enable bit Size Cycles Pipeline

[1] reset No 2 ? D

Opcode 1001 0100 xxxx xxxx

Operands none

Description This instruction performs a nonmaskable software reset that can be used any
time to put the device in a known state.

The reset instruction affects ST0_55, ST1_55, ST2_55, IFR0, IFR1, and T2
(Table 5−5 and Figure 5−4); status register ST3_55 and interrupt vectors
pointer registers (IVPD and IVPH) are not affected. When the reset instruction
is acknowledged, the INTM is set to 1 to disable maskable interrupts. All
pending interrupts in IFR0 and IFR1 are cleared. The initialization of the
system control register, the interrupt vectors pointer, and the peripheral
registers is different from the initialization performed by a hardware reset.

Status Bits Affected by none

Affects IFR0, IFR1, ST0_55, ST1_55, ST2_55

Repeat This instruction cannot be repeated.

RESET Software Reset (reset)

Instruction Set Descriptions5-552 SWPU068E

Table 5−5. Effects of a Software Reset on DSP Registers

Register Bit
Reset
Value Comment

T2 All 0 All bits are cleared. To ensure TMS320C54x DSP compatibility,
instructions affected by ASM bit will use a shift count of 0 (no shift).

IFR0 All 0 All pending interrupt flags are cleared.

IFR1 All 0 All pending interrupt flags are cleared.

ST0_55 ACOV2 0 AC2 overflow flag is cleared.

ACOV3 0 AC3 overflow flag is cleared.

TC1 1 Test control flag 1 is cleared.

TC2 1 Test control flag 2 is cleared.

CARRY 1 CARRY bit is cleared.

ACOV0 0 AC0 overflow flag is cleared.

ACOV1 0 AC1 overflow flag is cleared.

DP 0 All bits are cleared, data page 0 is selected.

ST1_55 BRAF 0 This flag is cleared.

CPL 0 The DP (rather than SP) direct addressing mode is selected. Direct ac-
cesses to data space are made relative to the data page register (DP).

XF 1 External flag is set.

HM 0 When an active HOLD signal forces the DSP to place its external interface
in the high-impedance state, the DSP continues executing code from
internal memory.

INTM 1 Maskable interrupts are globally disabled.

M40 0 32-bit (rather than 40-bit) computation mode is selected for the D unit.

SATD 0 CPU will not saturate overflow results in the D unit.

SXMD 1 Sign-extension mode is on.

C16 0 Dual 16-bit mode is off. For an instruction that is affected by C16, the D-
unit ALU performs one 32-bit operation rather than two parallel 16-bit op-
erations.

FRCT 0 Results of multiply operations are not shifted.

C54CM 1 TMS320C54x-compatibility mode is on.

ASM 0 Instructions affected by ASM will use a shift count of 0 (no shift).

 Software Reset (reset) RESET

5-553Instruction Set DescriptionsSWPU068E

Table 5−5. Effects of a Software Reset on DSP Registers (Continued)

Register Comment
Reset
ValueBit

ST2_55 ARMS 0 When you use the AR indirect addressing mode, the DSP mode (rather
than control mode) operands are available.

DBGM 1 Debug events are disabled.

EALLOW 0 A program cannot write to the non-CPU emulation registers.

RDM 0 When an instruction specifies that an operand should be rounded, the
CPU uses rounding to the infinite (rather than rounding to the nearest).

CDPLC 0 CDP is used for linear addressing (rather than circular addressing).

AR7LC 0 AR7 is used for linear addressing.

AR6LC 0 AR6 is used for linear addressing.

AR5LC 0 AR5 is used for linear addressing.

AR4LC 0 AR4 is used for linear addressing.

AR3LC 0 AR3 is used for linear addressing.

AR2LC 0 AR2 is used for linear addressing.

AR1LC 0 AR1 is used for linear addressing.

AR0LC 0 AR0 is used for linear addressing.

RESET Software Reset (reset)

Instruction Set Descriptions5-554 SWPU068E

Figure 5−4. Effects of a Software Reset on Status Registers

ST0_55

15 14 13 12 11 10 9

ACOV2 ACOV3 TC1 TC2 CARRY ACOV0 ACOV1

0 0 1 1 1 0 0

8 0

DP

0

ST1_55

15 14 13 12 11 10 9 8

BRAF CPL XF HM INTM M40 SATD SXMD

0 0 1 0 1 0 0 1

7 6 5 4 0

C16 FRCT C54CM ASM

0 0 1 0

ST2_55

15 14 13 12 11 10 9 8

ARMS Reserved DBGM EALLOW RDM Reserved CDPLC

0 1 0 0 0

7 6 5 4 3 2 1 0

AR7LC AR6LC AR5LC AR4LC AR3LC AR2LC AR1LC AR0LC

0 0 0 0 0 0 0 0

 Software Trap (trap) TRAP

5-555Instruction Set DescriptionsSWPU068E

Software TrapTRAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] trap(k5) No 2 ? D

Opcode 1001 0101 1xxk kkkk

Operands k5

Description This instruction passes control to a specified interrupt service routine (ISR)
and this instruction does not affect INTM bit in ST1_55 and DBGM bit in
ST2_55. The ISR address is stored at the interrupt vector address defined by
the content of an interrupt vector pointer (IVPD or IVPH) combined with the
5-bit constant, k5. This instruction is executed regardless of the value of INTM
bit . This instruction is not maskable.

Note:

DBSTAT (the debug status register) holds debug context information used
during emulation. Make sure the ISR does not modify the value that will be
returned to DBSTAT.

Before beginning an ISR, the CPU automatically saves the value of some CPU
registers and two internal registers: the program counter (PC) and a loop
context register. The CPU can use these values to re-establish the context of
the interrupted program sequence when the ISR is done.

In the slow-return process (default), the return address (from the PC), the loop
context bits, and some CPU registers are stored to the stacks (in memory).
When the CPU returns from an ISR, the speed at which these values are
restored is dependent on the speed of the memory accesses.

In the fast-return process, the return address (from the PC) and the loop
context bits are saved to registers, so that these values can always be restored
quickly. These special registers are the return address register (RETA) and the
control-flow context register (CFCT). You can read from or write to RETA and
CFCT as a pair with dedicated, 32-bit load and store instructions. Some CPU
registers are saved to the stacks (in memory). For fast-return mode operation,
see the TMS320C55x DSP CPU Reference Guide (SPRU371).

When control is passed to the ISR:

TRAP Software Trap (trap)

Instruction Set Descriptions5-556 SWPU068E

� The data stack pointer (SP) is decremented by 1 word in the address
phase of the pipeline. The status register 2 (ST2_55) content is pushed
to the top of SP.

� The system stack pointer (SSP) is decremented by 1 word in the address
phase of the pipeline. The 7 higher bits of status register 0 (ST0_55)
concatenated with 9 zeroes are pushed to the top of SSP.

� The SP is decremented by 1 word in the access phase of the pipeline. The
status register 1 (ST1_55) content is pushed to the top of SP.

� The SSP is decremented by 1 word in the access phase of the pipeline.
The debug status register (DBSTAT) content is pushed to the top of SSP.

� The SP is decremented by 1 word in the read phase of the pipeline. The
16 LSBs of the return address, from the program counter (PC), of the
called subroutine are pushed to the top of SP.

� The SSP is decremented by 1 word in the read phase of the pipeline. The
loop context bits concatenated with the 8 MSBs of the return address are
pushed to the top of SSP.

� The PC is loaded with the ISR program address. The active control flow
execution context flags are cleared.

System Stack (SSP) Data Stack (SP)

After
Save

→ SSP = x − 3 (Loop bits):PC(23−16) After
Save

→ SP = y − 3 PC(15−0)After
Save SSP = x − 2 DBSTAT

After
Save SP = y − 2 ST1_55

SSP = x − 1 ST0_55(15−9) SP = y − 1 ST2_55

Before
Save

→ SSP = x Previously saved data Before
Save

→ SP = y Previously saved dataBefore
Save

Before
Save

Status Bits Affected by none

Affects none

Repeat This instruction cannot be repeated.

See Also See the following other related instructions:

� Return from Interrupt

� Software Interrupt

Example

Syntax Description

trap(5) Program control is passed to the specified interrupt service routine. The interrupt vector address is
defined by the content of an interrupt vector pointer (IVPD) combined with the unsigned 5-bit value (5).

 Square SQR

5-557Instruction Set DescriptionsSWPU068E

SquareSQR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACx * ACx) Yes 2 1 X

[2] ACx = rnd(Smem * Smem)[, T3 = Smem] No 3 1 X

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are:

� ACx(32−16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Multiply

� Square and Accumulate

� Square and Subtract

� Square Distance

SQR Square

Instruction Set Descriptions5-558 SWPU068E

Square

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACx * ACx) Yes 2 1 X

Opcode 0101 010E DDSS 100%

Operands ACx, ACy

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are ACx(32−16).

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 * AC1 The content of AC1 is squared and the result is stored in AC0.

 Square SQR

5-559Instruction Set DescriptionsSWPU068E

Square

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACx = rnd(Smem * Smem)[, T3 = Smem] No 3 1 X

Opcode 1101 0011 AAAA AAAI U%DD 10xx

Operands ACx, Smem

Description This instruction performs a multiplication in the D-unit MAC. The input
operands of the multiplier are the content of a memory (Smem) location, sign
extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVx) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 * *AR3 The content addressed by AR3 is squared and the result is stored in AC0.

SQA Square and Accumulate

Instruction Set Descriptions5-560 SWPU068E

Square and AccumulateSQA

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + (ACx * ACx)) Yes 2 1 X

[2] ACy = rnd(ACx + (Smem * Smem)) [,T3 = Smem] No 3 1 X

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are:

� ACx(32−16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Multiply and Accumulate

� Square

� Square Distance

� Square and Subtract

 Square and Accumulate SQA

5-561Instruction Set DescriptionsSWPU068E

Square and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy + (ACx * ACx)) Yes 2 1 X

Opcode 0101 010E DDSS 001%

Operands ACx, ACy

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32−16).

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 + (AC1 * AC1) The content of AC1 squared is added to the content of AC0 and the result is
stored in AC0.

SQA Square and Accumulate

Instruction Set Descriptions5-562 SWPU068E

Square and Accumulate

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = rnd(ACx + (Smem * Smem)) [,T3 = Smem] No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 10SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 + (*AR3 * *AR3) The content addressed by AR3 squared is added to the content of AC1 and
the result is stored in AC0.

 Square and Subtract SQS

5-563Instruction Set DescriptionsSWPU068E

Square and SubtractSQS

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy – (ACx * ACx)) Yes 2 1 X

[2] ACy = rnd(ACx – (Smem * Smem))[, T3 = Smem] No 3 1 X

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are:

� ACx(32−16)
� the content of a memory (Smem) location, sign extended to 17 bits

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVx, ACOVy

See Also See the following other related instructions:

� Multiply and Subtract

� Square

� Square and Accumulate

� Square Distance

SQS Square and Subtract

Instruction Set Descriptions5-564 SWPU068E

Square and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = rnd(ACy – (ACx * ACx)) Yes 2 1 X

Opcode 0101 010E DDSS 010%

Operands ACx, ACy

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are ACx(32−16).

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACy.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC1 – (AC0 * AC0) The content of AC0 squared is subtracted from the content of AC1 and the
result is stored in AC1.

 Square and Subtract SQS

5-565Instruction Set DescriptionsSWPU068E

Square and Subtract

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] ACy = rnd(ACx – (Smem * Smem))[, T3 = Smem] No 3 1 X

Opcode 1101 0010 AAAA AAAI U%DD 11SS

Operands ACx, ACy, Smem

Description This instruction performs a multiplication and a subtraction in the D-unit MAC.
The input operands of the multiplier are the content of a memory (Smem)
location, sign extended to 17 bits.

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and
subtracted from the source accumulator ACx.

� Rounding is performed according to RDM, if the optional rnd keyword is
applied to the instruction.

� Overflow detection depends on M40. If an overflow is detected, the
destination accumulator overflow status bit (ACOVy) is set.

� When an overflow is detected, the accumulator is saturated according to
SATD.

This instruction provides the option to store the 16-bit data memory operand
Smem in temporary register T3.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by FRCT, M40, RDM, SATD, SMUL

Affects ACOVy

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (*AR3 * *AR3) The content addressed by AR3 squared is subtracted from the content of AC1
and the result is stored in AC0.

SQDST Square Distance (sqdst)

Instruction Set Descriptions5-566 SWPU068E

Square DistanceSQDST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] sqdst(Xmem, Ymem, ACx, ACy) No 4 1 X

Opcode 1000 0110 XXXM MMYY YMMM DDDD 1110 xxn%

Operands ACx, ACy, Xmem, Ymem

Description This instruction performs two parallel operations: multiply and accumulate
(MAC), and subtract:

ACy = ACy + (ACx * ACx),
ACx = (Xmem << #16) – (Ymem << #16)

The first operation performs a multiplication and an accumulation in the D-unit
MAC. The input operands of the multiplier are ACx(32−16).

� If FRCT = 1, the output of the multiplier is shifted left by 1 bit.

� Multiplication overflow detection depends on SMUL.

� The 32-bit result of the multiplication is sign extended to 40 bits and added
to the source accumulator ACy.

� Addition overflow detection depends on M40. If an overflow is detected,
the destination accumulator overflow status bit (ACOVy) is set.

� When an addition overflow is detected, the accumulator is saturated
according to SATD.

The second operation subtracts the content of data memory operand Ymem,
shifted left 16 bits, from the content of data memory operand Xmem, shifted
left 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

 Square Distance (sqdst) SQDST

5-567Instruction Set DescriptionsSWPU068E

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, during the subtraction an intermediary shift operation is
performed as if M40 is locally set to 1 and no overflow detection, report, and
saturation is done after the shifting operation.

Status Bits Affected by C54CM, FRCT, M40, SATD, SMUL, SXMD

Affects ACOVx, ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Absolute Distance

� Square

� Square and Accumulate

� Square and Subtract

Example

Syntax Description

sqdst(*AR0, *AR1, AC0, AC1) The content of AC0 squared is added to the content of AC1 and the result
is stored in AC1. The content addressed by AR1 shifted left by 16 bits is
subtracted from the content addressed by AR0 shifted left by 16 bits and
the result is stored in AC0.

Before After

AC0 FF ABCD 0000 AC0 FF FFAB 0000

AC1 00 0000 0000 AC1 00 1BB1 8229

*AR0 0055 *AR0 0055

*AR1 00AA *AR1 00AA

ACOV0 0 ACOV0 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 0

FRCT 0 FRCT 0

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-568 SWPU068E

Store Accumulator Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = HI(ACx) No 2 1 X

[2] Smem = HI(rnd(ACx)) No 3 1 X

[3] Smem = LO(ACx << Tx) No 3 1 X

[4] Smem = HI(rnd(ACx << Tx)) No 3 1 X

[5] Smem = LO(ACx << #SHIFTW) No 3 1 X

[6] Smem = HI(ACx << #SHIFTW) No 3 1 X

[7] Smem = HI(rnd(ACx << #SHIFTW)) No 4 1 X

[8] Smem = HI(saturate(uns(rnd(ACx)))) No 3 1 X

[9] Smem = HI(saturate(uns(rnd(ACx << Tx)))) No 3 1 X

[10] Smem = HI(saturate(uns(rnd(ACx << #SHIFTW)))) No 4 1 X

[11] dbl(Lmem) = ACx No 3 1 X

[12] dbl(Lmem) = saturate(uns(ACx)) No 3 1 X

[13] HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

No 3 1 X

[14] Xmem = LO(ACx),
Ymem = HI(ACx)

No 3 1 X

Description This instruction stores the content of the selected accumulator (ACx) to a
memory (Smem) location, to a data memory operand (Lmem), or to dual data
memory operands (Xmem and Ymem).

Status Bits Affected by C54CM, RDM, SXMD

Affects none

 Store Accumulator Content to Memory MOV

5-569Instruction Set DescriptionsSWPU068E

See Also See the following other related instructions:

� Addition with Parallel Store Accumulator Content to Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Multiply and Accumulate with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Multiply with Parallel Store Accumulator Content to Memory

� Store Accumulator Pair Content to Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

� Store Auxiliary or Temporary Register Pair Content to Memory

� Subtraction with Parallel Store Accumulator Content to Memory

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-570 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = HI(ACx) No 2 1 X

Opcode 1011 11SS AAAA AAAI

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31−16), to the
memory (Smem) location. The store operation to the memory location uses a
dedicated path independent of the D-unit ALU, the D-unit shifter, and the D-unit
MACs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(AC0) The content of AC0(31–16) is stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-571Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] Smem = HI(rnd(ACx)) No 3 1 X

Opcode 1110 1000 AAAA AAAI SSxx x0x%

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31−16), to the
memory (Smem) location. Rounding is performed in the D-unit shifter
according to RDM, if the optional rnd keyword is applied to the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(uns(rnd(ACx))))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx)))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(rnd(AC0)) The content of AC0(31–16) is rounded and stored at the location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-572 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] Smem = LO(ACx << Tx) No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 00xx

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
the low part of the accumulator, ACx(15−0), to the memory (Smem) location.
If the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value. The input operand is shifted in
the D-unit shifter according to SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, the 6 LSBs of Tx determine
the shift quantity. The 6 LSBs of Tx define a shift quantity within –32 to +31.
When the 16-bit value in Tx is between –32 to –17, a modulo 16 operation
transforms the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = LO(saturate(uns(ACx << Tx)))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = LO(saturate(ACx << Tx))

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = LO(AC0 << T0) The content of AC0 is shifted by the content of T0 and AC0(15−0) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-573Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] Smem = HI(rnd(ACx << Tx)) No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 10x%

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
high part of the accumulator, ACx(31−16), to the memory (Smem) location. If
the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value. The input operand is shifted in
the D-unit shifter according to SXMD. Rounding is performed in the D-unit
shifter according to RDM, if the optional rnd keyword is applied to the input
operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, the 6 LSBs of Tx determine
the shift quantity. The 6 LSBs of Tx define a shift quantity within –32 to +31.
When the 16-bit value in Tx is between –32 to –17, a modulo 16 operation
transforms the shift quantity to within –16 to –1.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(uns(rnd(ACx << Tx))))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx << Tx)))

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(rnd(AC0 << T0)) The content of AC0 is shifted by the content of T0, is rounded, and
AC0(31−16) is stored at the location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-574 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] Smem = LO(ACx << #SHIFTW) No 3 1 X

Opcode 1110 1001 AAAA AAAI SSSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the low part of the accumulator, ACx(15−0), to the memory (Smem)
location. The input operand is shifted by the 6-bit value in the D-unit shifter
according to SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = LO(saturate(uns(ACx << #SHIFTW)))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = LO(saturate(ACx << #SHIFTW))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = LO(AC0 << #31) The content of AC0 is shifted left by 31 bits and AC0(15−0) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-575Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] Smem = HI(ACx << #SHIFTW) No 3 1 X

Opcode 1110 1010 AAAA AAAI SSSH IFTW

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31−16), to the memory (Smem)
location. The input operand is shifted by the 6-bit value in the D-unit shifter
according to SXMD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = HI(saturate(uns(ACx << #SHIFTW)))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

Smem = HI(saturate(ACx << #SHIFTW))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(AC0 << #31) The content of AC0 is shifted left by 31 bits and AC0(31−16) is stored at the
location addressed by AR3.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-576 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] Smem = HI(rnd(ACx << #SHIFTW)) No 4 1 X

Opcode 1111 1010 AAAA AAAI xxSH IFTW SSxx x0x%

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31−16), to the memory (Smem)
location. The input operand is shifted by the 6-bit value in the D-unit shifter
according to SXMD. Rounding is performed in the D-unit shifter according to
RDM, if the optional rnd keyword is applied to the input operand.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(uns(rnd(ACx << #SHIFTW))))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx << #SHIFTW)))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(rnd(AC0 << #31)) The content of AC0 is shifted left by 31 bits, is rounded, and AC0(31−16) is
stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-577Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] Smem = HI(saturate(uns(rnd(ACx)))) No 3 1 X

Opcode 1110 1000 AAAA AAAI SSxx x1u%

Operands ACx, Smem

Description This instruction stores the high part of the accumulator, ACx(31−16), to the
memory (Smem) location.

� When the C54CM bit = 0 or the SST bit = 0, the saturate and uns keywords
are optional and can be applied or not.

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a rounding overflow is detected and if the optional saturate keyword
is applied to the input operand, the 40-bit output of the operation is
saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the round operation:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-578 SWPU068E

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx)))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(saturate(uns(rnd(AC0)))) The unsigned content of AC0 is rounded, is saturated, and
AC0(31−16) is stored at the location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-579Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] Smem = HI(saturate(uns(rnd(ACx << Tx)))) No 3 1 X

Opcode 1110 0111 AAAA AAAI SSss 11u%

Operands ACx, Smem, Tx

Description This instruction shifts the accumulator, ACx, by the content of Tx and stores
the high part of the accumulator, ACx(31−16), to the memory (Smem) location.
If the 16-bit value in Tx is not within –32 to +31, the shift is saturated to –32 or
+31 and the shift is performed with this value.

� When the C54CM bit = 0 or the SST bit = 0, the saturate and uns keywords
are optional and can be applied or not.

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The input operand is shifted in the D-unit shifter according to SXMD.

� When shifting, the sign position of the input operand is compared to the
shift quantity.

� If the optional uns keyword is applied to the input operand, this
comparison is performed against bit 32 of the shifted operand.

� If the optional uns keyword is not applied, this comparison is
performed against bit 31 of the shifted operand that is considered
signed (the sign is defined by bit 39 of the input operand and SXMD).

� An overflow is generated accordingly.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a shift or rounding overflow is detected and if the optional saturate
keyword is applied to the input operand, the 40-bit output of the operation
is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-580 SWPU068E

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1:

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user.

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx << Tx)))

� Overflow detection at the output of the shifter consists of checking if the
sign of the input operand is identical to the most-significant bits of the
40-bit result of the shift and round operation.

� If the optional uns keyword is applied to the input operand, then bits
39–32 of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand,
then bits 39–31 of the result are compared to bit 39 of the input
operand and SXMD.

� The 6 LSBs of Tx determine the shift quantity. The 6 LSBs of Tx define a
shift quantity within –32 to +31. When the 16-bit value in Tx is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(saturate(uns(rnd(AC0 << T0)))) The unsigned content of AC0 is shifted by the content of T0, is
rounded, is saturated, and AC0(31−16) is stored at the location
addressed by AR3.

 Store Accumulator Content to Memory MOV

5-581Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] Smem = HI(saturate(uns(rnd(ACx << #SHIFTW)))) No 4 1 X

Opcode 1111 1010 AAAA AAAI uxSH IFTW SSxx x1x%

Operands ACx, SHIFTW, Smem

Description This instruction shifts the accumulator, ACx, by the 6-bit value, SHIFTW, and
stores the high part of the accumulator, ACx(31−16), to the memory (Smem)
location.

� When the C54CM bit = 0 or the SST bit = 0, the saturate and uns keywords
are optional and can be applied or not.

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The input operand is shifted by the 6-bit value in the D-unit shifter
according to SXMD.

� When shifting, the sign position of the input operand is compared to the
shift quantity.

� If the optional uns keyword is applied to the input operand, this
comparison is performed against bit 32 of the shifted operand.

� If the optional uns keyword is not applied, this comparison is
performed against bit 31 of the shifted operand that is considered
signed (the sign is defined by bit 39 of the input operand and SXMD).

� An overflow is generated accordingly.

� If the optional rnd keyword is applied to the input operand, rounding is
performed in the D-unit shifter according to RDM.

� When a shift or rounding overflow is detected and if the optional saturate
keyword is applied to the input operand, the 40-bit output of the operation
is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-582 SWPU068E

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate, rnd, and uns
keywords are applied to the instruction regardless of the optional
keywords selected by the user.

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate and rnd
keywords are applied to the instruction regardless of the optional
keywords selected by the user, with the following syntax:

Smem = HI(saturate(rnd(ACx << #SHIFTW)))

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = HI(saturate(uns(rnd(AC0 << #31)))) The unsigned content of AC0 is shifted left by 31 bits, is
rounded, is saturated, and AC0(31−16) is stored at the
location addressed by AR3.

 Store Accumulator Content to Memory MOV

5-583Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] dbl(Lmem) = ACx No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 10x0

Operands ACx, Lmem

Description This instruction stores the content of the accumulator, ACx(31−0), to the data
memory operand (Lmem). The store operation to the memory location uses
a dedicated path independent of the D-unit ALU, the D-unit shifter, and the
D-unit MACs.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

dbl(*AR3) = AC0 The content of AC0 is stored at the locations addressed by AR3 and AR3 + 1.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-584 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] dbl(Lmem) = saturate(uns(ACx)) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 10u1

Operands ACx, Lmem

Description This instruction stores the content of the accumulator, ACx(31−0), to the data
memory operand (Lmem).

� When the C54CM bit = 0 or the SST bit = 0, the saturate and uns keywords
are optional and can be applied or not.

� Input operands are considered signed or unsigned according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is considered unsigned.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is considered signed.

� The 40-bit output of the operation is saturated:

� If the optional uns keyword is applied to the input operand, saturation
value is 00 FFFF FFFFh.

� If the optional uns keyword is not applied, saturation values are
00 7FFF FFFFh (positive overflow) or FF 8000 0000h (negative
overflow).

� The store operation to the memory location uses the D-unit shifter.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with C54CM = 1, overflow detection at the
output of the shifter consists of checking if the sign of the input operand is
identical to the most-significant bits of the 40-bit result of the shift and round
operation.

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user.

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user.

 Store Accumulator Content to Memory MOV

5-585Instruction Set DescriptionsSWPU068E

� If the optional uns keyword is applied to the input operand, then bits 39–32
of the result are compared to 0.

� If the optional uns keyword is not applied to the input operand, then bits
39–31 of the result are compared to bit 39 of the input operand and SXMD.

Status Bits Affected by C54CM, RDM, SST, SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

dbl(*AR3) = saturate(uns(AC0)) The unsigned content of AC0 is saturated and stored at the locations
addressed by AR3 and AR3 + 1.

MOV Store Accumulator Content to Memory

Instruction Set Descriptions5-586 SWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1101

Operands ACx, Lmem

Description This instruction performs two store operations in parallel and is executed in the
D-unit shifter:

� The 16 highest bits of the accumulator, ACx(31−16), shifted right by 1 bit
(bit 31 is sign extended according to SXMD), are stored to the
16 highest bits of the data memory operand (Lmem).

� The 16 lowest bits, ACx(15−0), shifted right by 1 bit (bit 15 is sign extended
according to SXMD), are stored to the 16 lowest bits of the data memory
operand (Lmem).

Status Bits Affected by SXMD

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

HI(*AR1) = HI(AC0) >> #1,
LO(*AR1) = LO(AC0) >> #1

The content of AC0(31–16), shifted right by 1 bit, is stored at the location
addressed by AR1 and the content of AC0(15−0), shifted right by 1 bit, is
stored at the location addressed by AR1 + 1.

 Store Accumulator Content to Memory MOV

5-587Instruction Set DescriptionsSWPU068E

Store Accumulator Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] Xmem = LO(ACx),
Ymem = HI(ACx)

No 3 1 X

Opcode 1000 0000 XXXM MMYY YMMM 10SS

Operands ACx, Xmem, Ymem

Description This instruction performs two store operations in parallel:

� The 16 lowest bits of the accumulator, ACx(15−0), are stored to data
memory operand Xmem.

� The 16 highest bits, ACx(31−16), are stored to data memory operand Ymem.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR1 = LO(AC0),
*AR2 = HI(AC0)

The content of AC0(15–0) is stored at the location addressed by AR1 and the
content of AC0(31–16) is stored at the location addressed by AR2.

Before After

AC0 01 4500 0030 AC0 01 4500 0030

AR1 0200 AR1 0200

AR2 0201 AR2 0201

200 3400 200 0030

201 0FD3 201 4500

MOV Store Accumulator Pair Content to Memory

Instruction Set Descriptions5-588 SWPU068E

Store Accumulator Pair Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Lmem = pair(HI(ACx)) No 3 1 X

[2] Lmem = pair(LO(ACx)) No 3 1 X

Description This instruction stores the content of the selected accumulator pair, ACx and
AC(x + 1), to a data memory operand (Lmem).

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Addition with Parallel Store Accumulator Content to Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Multiply and Accumulate with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Multiply with Parallel Store Accumulator Content to Memory

� Store Accumulator Content to Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

� Store Auxiliary or Temporary Register Pair Content to Memory

� Subtraction with Parallel Store Accumulator Content to Memory

 Store Accumulator Pair Content to Memory MOV

5-589Instruction Set DescriptionsSWPU068E

Store Accumulator Pair Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Lmem = pair(HI(ACx)) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1110

Operands ACx, Lmem

Description This instruction stores the 16 highest bits of the accumulator, ACx(31−16), to
the 16 highest bits of the data memory operand (Lmem) and stores the
16 highest bits of AC(x + 1) to the16 lowest bits of data memory operand
(Lmem):

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0/AC1 and AC2/AC3.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR1+ = pair(HI(AC0)) The content of AC0(31–16) is stored at the location addressed by AR1 and the
content of AC1(31–16) is stored at the location addressed by AR1 + 1. AR1 is
incremented by 2.

Before After

AC0 01 4500 0030 AC0 01 4500 0030

AC1 03 5644 F800 AC1 03 5644 F800

AR1 0200 AR1 0202

200 3400 200 4500

201 0FD3 201 5644

MOV Store Accumulator Pair Content to Memory

Instruction Set Descriptions5-590 SWPU068E

Store Accumulator Pair Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] Lmem = pair(LO(ACx)) No 3 1 X

Opcode 1110 1011 AAAA AAAI xxSS 1111

Operands ACx, Lmem

Description This instruction stores the 16 lowest bits of the accumulator, ACx(15−0), to the
16 highest bits of the data memory operand (Lmem) and stores the 16 lowest
bits of AC(x + 1) to the16 lowest bits of data memory operand (Lmem):

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� Valid accumulators are AC0/AC1 and AC2/AC3.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*AR3 = pair(LO(AC0)) The content of AC0(15–0) is stored at the location addressed by AR3 and the
content of AC1(15–0) is stored at the location addressed by AR3 + 1.

 Store Accumulator, Auxiliary, or Temporary Register Content to Memory MOV

5-591Instruction Set DescriptionsSWPU068E

Store Accumulator, Auxiliary, or Temporary Register Content to
Memory

MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = src No 2 1 X

[2] high_byte(Smem) = src No 3 1 X

[3] low_byte(Smem) = src No 3 1 X

Description This instruction stores the content of the selected source (src) register to a
memory (Smem) location.

Status Bits Affected by none

Affects none

See Also See the following other related instructions:

� Addition with Parallel Store Accumulator Content to Memory

� Load Accumulator from Memory with Parallel Store Accumulator Content
to Memory

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Multiply and Accumulate with Parallel Store Accumulator Content to Memory

� Multiply and Subtract with Parallel Store Accumulator Content to Memory

� Multiply with Parallel Store Accumulator Content to Memory

� Store Accumulator Content to Memory

� Store Accumulator Pair Content to Memory

� Store Auxiliary or Temporary Register Pair Content to Memory

� Subtraction with Parallel Store Accumulator Content to Memory

MOV Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Instruction Set Descriptions5-592 SWPU068E

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = src No 2 1 X

Opcode 1100 FSSS AAAA AAAI

Operands Smem, src

Description This instruction stores the content of the source (src) register to a memory
(Smem) location.

� When the source register is an accumulator:

� The low part of the accumulator, ACx(15−0), is stored to the memory
location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The content of the auxiliary or temporary register is stored to the
memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

*(#0E10h) = AC0 The content of AC0(15–0) is stored at location E10h.

Before After

AC0 23 0400 6500 AC0 23 0400 6500

0E10 0000 0E10 6500

 Store Accumulator, Auxiliary, or Temporary Register Content to Memory MOV

5-593Instruction Set DescriptionsSWPU068E

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] high_byte(Smem) = src No 3 1 X

Opcode 1110 0101 AAAA AAAI FSSS 01x0

Operands Smem, src

Description This instruction stores the low byte (bits 7−0) of the source (src) register to the
high byte (bits 15−8) of the memory (Smem) location. The low byte (bits 7−0)
of Smem is unchanged.

� When the source register is an accumulator:

� The low part of the accumulator, ACx(7−0), is stored to the high byte of
the memory location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The low part (bits 7−0) content of the auxiliary or temporary register is
stored to the high byte of the memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

high_byte(*AR1) = AC1 The content of AC1(7–0) is stored in the high byte (bits 15−8) at the location
addressed by AR1.

Before After

AC1 20 FC00 6788 AC1 20 FC00 6788

AR1 0200 AR1 0200

200 6903 200 8803

MOV Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Instruction Set Descriptions5-594 SWPU068E

Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] low_byte(Smem) = src No 3 1 X

Opcode 1110 0101 AAAA AAAI FSSS 01x1

Operands Smem, src

Description This instruction stores the low byte (bits 7−0) of the source (src) register to the
low byte (bits 7−0) of the memory (Smem) location. The high byte (bits 15−8)
of Smem is unchanged.

� When the source register is an accumulator:

� The low part of the accumulator, ACx(7−0), is stored to the low byte of
the memory location.

� The store operation to the memory location uses a dedicated path
independent of the D-unit ALU, the D-unit shifter, and the D-unit MACs.

� When the source register is an auxiliary or temporary register:

� The low part (bits 7−0) content of the auxiliary or temporary register is
stored to the low byte of the memory location.

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� In this instruction, Smem cannot reference to a memory-mapped register
(MMR). This instruction cannot access a byte within an MMR. If Smem is
an MMR, the DSP sends a hardware bus-error interrupt (BERRINT)
request to the CPU.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

Example

Syntax Description

low_byte(*AR3) = AC0 The content of AC0(7–0) is stored in the low byte (bits 7−0) at the location
addressed by AR3.

 Store Auxiliary or Temporary Register Pair Content to Memory MOV

5-595Instruction Set DescriptionsSWPU068E

Store Auxiliary or Temporary Register Pair Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Lmem = pair(TAx) No 3 1 X

Opcode 1110 1011 AAAA AAAI FSSS 1100

Operands TAx, Lmem

Description This instruction stores the content of the temporary or auxiliary register (TAx)
to the 16 highest bits of the data memory operand (Lmem) and stores the
content of TA(x + 1) to the 16 lowest bits of data memory operand (Lmem):

� The store operation to the memory location uses a dedicated path
independent of the A-unit ALU.

� Valid auxiliary registers are AR0, AR2, AR4, and AR6.

� Valid temporary registers are T0 and T2.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Accumulator, Auxiliary, or Temporary Register from Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

Example

Syntax Description

*AR2 = pair(T0) The content of T0 is stored at the location addressed by AR2 and the content of
T1 is stored at the location addressed by AR2 + 1.

MOV Store CPU Register Content to Memory

Instruction Set Descriptions5-596 SWPU068E

Store CPU Register Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] Smem = BK03 No 3 1 X

[2] Smem = BK47 No 3 1 X

[3] Smem = BKC No 3 1 X

[4] Smem = BSA01 No 3 1 X

[5] Smem = BSA23 No 3 1 X

[6] Smem = BSA45 No 3 1 X

[7] Smem = BSA67 No 3 1 X

[8] Smem = BSAC No 3 1 X

[9] Smem = BRC0 No 3 1 X

[10] Smem = BRC1 No 3 1 X

[11] Smem = CDP No 3 1 X

[12] Smem = CSR No 3 1 X

[13] Smem = DP No 3 1 X

[14] Smem = DPH No 3 1 X

[15] Smem = PDP No 3 1 X

[16] Smem = SP No 3 1 X

[17] Smem = SSP No 3 1 X

[18] Smem = TRN0 No 3 1 X

[19] Smem = TRN1 No 3 1 X

[20] dbl(Lmem) = RETA No 3 5 X

Opcode See Table 5−6 (page 5-599).

Operands Lmem, Smem

 Store CPU Register Content to Memory MOV

5-597Instruction Set DescriptionsSWPU068E

Description These instructions store the content of the selected source CPU register to a
memory (Smem) location or a data memory operand (Lmem).

For instructions [9] and [10], the block repeat register (BRCx) is decremented
in the address phase of the last instruction of the loop. These instructions have
a 3-cycle latency requirement versus the last instruction of the loop.

For instruction [20], the content of the 24-bit RETA register (the return address
of the calling subroutine) and the 8-bit CFCT register (active control flow
execution context flags of the calling subroutine) are stored to the data
memory operand (Lmem):

� The content of the CFCT register and the 8 highest bits of the RETA
register are stored in the 16 highest bits of Lmem.

� The 16 lowest bits of the RETA register are stored in the 16 lowest bits of
Lmem.

When instruction [20] is decoded, the CPU pipeline is flushed and the
instruction is executed in 5 cycles, regardless of the instruction context.

Status Bits Affected by none

Affects none

Repeat Instruction [20] cannot be repeated; all other instructions can be repeated.

See Also See the following other related instructions:

� Load CPU Register from Memory

� Load CPU Register with Immediate Value

� Move CPU Register Content to Auxiliary or Temporary Register

� Store Accumulator Content to Memory

� Store Accumulator Pair Content to Memory

� Store Accumulator, Auxiliary, or Temporary Register Content to Memory

� Store Auxiliary or Temporary Register Pair Content to Memory

Example 1

Syntax Description

*AR1+ = SP The content of the data stack pointer (SP) is stored in the location addressed by AR1.
AR1 is incremented by 1.

Before After

AR1 0200 AR1 0201

SP 0200 SP 0200

200 0000 200 0200

MOV Store CPU Register Content to Memory

Instruction Set Descriptions5-598 SWPU068E

Example 2

Syntax Description

*AR1+ = SSP The content of the system stack pointer (SSP) is stored in the location addressed by AR1.
AR1 is incremented by 1.

Before After

AR1 0201 AR1 0202

SSP 0000 SSP 0000

201 00FF 201 0000

Example 3

Syntax Description

*AR1+ = TRN0 The content of the transition register (TRN0) is stored in the location addressed by AR1.
AR1 is incremented by 1.

Before After

AR1 0202 AR1 0203

TRN0 3490 TRN0 3490

202 0000 202 3490

Example 4

Syntax Description

*AR1+ = TRN1 The content of the transition register (TRN1) is stored in the location addressed by AR1.
AR1 is incremented by 1.

Before After

AR1 0203 AR1 0204

TRN1 0020 TRN1 0020

203 0000 203 0020

Example 5

Syntax Description

dbl(*AR3) = RETA The contents of the RETA and CFCT are stored in the location addressed by AR3
and AR3 + 1.

 Store CPU Register Content to Memory MOV

5-599Instruction Set DescriptionsSWPU068E

Table 5−6. Opcodes for Store CPU Register Content to Memory Instruction

No. Syntax Opcode

[1] Smem = BK03 1110 0101 AAAA AAAI 1001 10xx

[2] Smem = BK47 1110 0101 AAAA AAAI 1010 10xx

[3] Smem = BKC 1110 0101 AAAA AAAI 1011 10xx

[4] Smem = BSA01 1110 0101 AAAA AAAI 0010 10xx

[5] Smem = BSA23 1110 0101 AAAA AAAI 0011 10xx

[6] Smem = BSA45 1110 0101 AAAA AAAI 0100 10xx

[7] Smem = BSA67 1110 0101 AAAA AAAI 0101 10xx

[8] Smem = BSAC 1110 0101 AAAA AAAI 0110 10xx

[9] Smem = BRC0 1110 0101 AAAA AAAI x001 11xx

[10] Smem = BRC1 1110 0101 AAAA AAAI x010 11xx

[11] Smem = CDP 1110 0101 AAAA AAAI 0001 10xx

[12] Smem = CSR 1110 0101 AAAA AAAI x000 11xx

[13] Smem = DP 1110 0101 AAAA AAAI 0000 10xx

[14] Smem = DPH 1110 0101 AAAA AAAI 1100 10xx

[15] Smem = PDP 1110 0101 AAAA AAAI 1111 10xx

[16] Smem = SP 1110 0101 AAAA AAAI 0111 10xx

[17] Smem = SSP 1110 0101 AAAA AAAI 1000 10xx

[18] Smem = TRN0 1110 0101 AAAA AAAI x011 11xx

[19] Smem = TRN1 1110 0101 AAAA AAAI x100 11xx

[20] dbl(Lmem) = RETA 1110 1011 AAAA AAAI xxxx 01xx

MOV Store Extended Auxiliary Register Content to Memory

Instruction Set Descriptions5-600 SWPU068E

Store Extended Auxiliary Register Content to MemoryMOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dbl(Lmem) = XAsrc No 3 1 X

Opcode 1110 1101 AAAA AAAI XSSS 0101

Operands Lmem, XAsrc

Description This instruction moves the content of the 23-bit source register (XARx, XSP,
XSSP, XDP, or XCDP) to the 32-bit data memory location addressed by data
memory operand (Lmem). The upper 9 bits of the data memory are filled with 0:

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Load Extended Auxiliary Register from Memory

� Load Extended Auxiliary Register with Immediate Value

� Modify Extended Auxiliary Register Content

� Move Extended Auxiliary Register Content

Example

Syntax Description

dbl(*AR3) = XAR1 The 7 highest bits of XAR1 are moved to the 7 lowest bits of the location addressed
by AR3, the 9 highest bits are filled with 0, and the 16 lowest bits of XAR1 are moved
to the location addressed by AR3 + 1.

Before After

XAR1 7F 3492 XAR1 7F 3492

AR3 0200 AR3 0200

200 3765 200 007F

201 0FD3 201 3492

 Subtract Conditionally (subc) SUBC

5-601Instruction Set DescriptionsSWPU068E

Subtract ConditionallySUBC

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] subc(Smem, ACx, ACy) No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0011

Operands ACx, ACy, Smem

Description This instruction performs a conditional subtraction in the D-unit ALU. The
D-unit shifter is not used to perform the memory operand shift.

� The 16-bit data memory operand Smem is sign extended to 40 bits
according to SXMD, shifted left by 15 bits, and subtracted from the content
of the source accumulator ACx.

� The shift operation is equivalent to the signed shift instruction.

� Overflow and carry bit is always detected at bit position 31. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� If an overflow is detected and reported in accumulator overflow bit
ACOVy, no saturation is performed on the result of the operation.

� If the result of the subtraction is greater than 0 (bit 39 = 0), the result is
shifted left by 1 bit, added to 1, and stored in the destination accumulator
ACy.

� If the result of the subtraction is less than 0 (bit 39 = 1), the source
accumulator ACx is shifted left by 1 bit and stored in the destination
accumulator ACy.

if ((ACx – (Smem << #15)) >= 0)

ACy = (ACx – (Smem << #15)) << #1 + 1

else

ACy = ACx << #1

This instruction is used to make a 16 step 16-bit by 16-bit division. The divisor
and the dividend are both assumed to be positive in this instruction. SXMD
affects this operation:

� If SXMD = 1, the divisor must have a 0 value in the most significant bit

� If SXMD = 0, any 16-bit divisor value produces the expected result

The dividend, which is in the source accumulator ACx, must be positive
(bit 31 = 0) during the computation.

SUBC Subtract Conditionally (subc)

Instruction Set Descriptions5-602 SWPU068E

Status Bits Affected by SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Subtraction and Addition

� Subtraction

� Subtraction with Parallel Store Accumulator Content to Memory

Example 1

Syntax Description

subc(*AR1, AC0, AC1) The content addressed by AR1 shifted left by 15 bits is subtracted from the
content of AC0. The result is greater than 0; therefore, the result is shifted left by
1 bit, added to 1, and the new result stored in AC1. The result generated an
overflow and a carry.

Before After

AC0 23 4300 0000 AC0 23 4300 0000

AC1 00 0000 0000 AC1 46 8400 0001

AR1 300 AR1 300

300 200 300 200

SXMD 0 SXMD 0

ACOV1 0 ACOV1 1

CARRY 0 CARRY 1

Example 2

Syntax Description

repeat (CSR)

subc(*AR1, AC1, AC1)

The content addressed by AR1 shifted left by 15 bits is subtracted from the
content of AC1. The result is greater than 0; therefore, the result is shifted left by
1 bit, added to 1, and the new result stored in AC1. The content addressed by
AR1 shifted left by 15 bits is subtracted from the content of AC1. The result is
greater than 0; therefore, the result is shifted left by 1 bit, added to 1, and the new
result stored in AC1. The result generated a carry.

Before After

AC1 00 0746 0000 AC1 00 1A18 0007

AR1 200 AR1 200

200 0100 200 0100

CSR 1 CSR 0

ACOV1 0 ACOV1 0

CARRY 0 CARRY 1

 Subtraction SUB

5-603Instruction Set DescriptionsSWPU068E

SubtractionSUB

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst – src Yes 2 1 X

[2] dst = dst – k4 Yes 2 1 X

[3] dst = src – K16 No 4 1 X

[4] dst = src – Smem No 3 1 X

[5] dst = Smem – src No 3 1 X

[6] ACy = ACy – (ACx << Tx) Yes 2 1 X

[7] ACy = ACy – (ACx << #SHIFTW) Yes 3 1 X

[8] ACy = ACx – (K16 << #16) No 4 1 X

[9] ACy = ACx – (K16 << #SHFT) No 4 1 X

[10] ACy = ACx – (Smem << Tx) No 3 1 X

[11] ACy = ACx – (Smem << #16) No 3 1 X

[12] ACy = (Smem << #16) – ACx No 3 1 X

[13] ACy = ACx – uns(Smem) – BORROW No 3 1 X

[14] ACy = ACx – uns(Smem) No 3 1 X

[15] ACy = ACx – (uns(Smem) << #SHIFTW) No 4 1 X

[16] ACy = ACx – dbl(Lmem) No 3 1 X

[17] ACy = dbl(Lmem) – ACx No 3 1 X

[18] ACx = (Xmem << #16) – (Ymem << #16) No 3 1 X

Description These instructions perform a subtraction operation.

Status Bits Affected by CARRY, C54CM, M40, SATA, SATD, SXMD

Affects ACOVx, ACOVy, CARRY

SUB Subtraction

Instruction Set Descriptions5-604 SWPU068E

See Also See the following other related instructions:

� Addition

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtractions

� Dual 16-Bit Subtraction and Addition

� Subtract Conditionally

� Subtraction with Parallel Store Accumulator Content to Memory

 Subtraction SUB

5-605Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] dst = dst – src Yes 2 1 X

Opcode 0010 011E FSSS FDDD

Operands dst, src

Description This instruction performs a subtraction operation between two registers.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – AC1 The content of AC1 is subtracted from the content of AC0 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-606 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2] dst = dst – k4 Yes 2 1 X

Opcode 0100 011E kkkk FDDD

Operands dst, k4

Description This instruction subtracts a 4-bit unsigned constant, k4, from a register.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATA, SATD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – #15 An unsigned 4-bit value (15) is subtracted from the content of AC0 and the result is
stored in AC0.

 Subtraction SUB

5-607Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[3] dst = src – K16 No 4 1 X

Opcode 0111 1100 KKKK KKKK KKKK KKKK FDDD FSSS

Operands dst, K16, src

Description This instruction subtracts a 16-bit signed constant, K16, from a register.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The 16-bit constant, K16, is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

SUB Subtraction

Instruction Set Descriptions5-608 SWPU068E

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – FFFFh A signed 16-bit value (FFFFh) is subtracted from the content of AC1 and the result
is stored in AC0.

 Subtraction SUB

5-609Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[4] dst = src – Smem No 3 1 X

Opcode 1101 0111 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction subtracts the content of a memory (Smem) location from a
register content.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

SUB Subtraction

Instruction Set Descriptions5-610 SWPU068E

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – *AR3 The content addressed by AR3 is subtracted from the content of AC1 and the result
is stored in AC0.

 Subtraction SUB

5-611Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[5] dst = Smem – src No 3 1 X

Opcode 1101 1000 AAAA AAAI FDDD FSSS

Operands dst, Smem, src

Description This instruction subtracts a register content from the content of a memory
(Smem) location.

� When the destination operand (dst) is an accumulator:

� The operation is performed on 40 bits in the D-unit ALU.

� If an auxiliary or temporary register is the source operand (src) of the
instruction, the 16 LSBs of the auxiliary or temporary register are sign
extended according to SXMD.

� The content of the memory location is sign extended to 40 bits
according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow
bit is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according
to SATD.

� When the destination operand (dst) is an auxiliary or temporary register:

� The operation is performed on 16 bits in the A-unit ALU.

� If an accumulator is the source operand (src) of the instruction, the
16 LSBs of the accumulator are used to perform the operation.

� Overflow detection is done at bit position 15.

� When an overflow is detected, the destination register is saturated
according to SATA.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

SUB Subtraction

Instruction Set Descriptions5-612 SWPU068E

Status Bits Affected by M40, SATA, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = *AR3 – AC1 The content of AC1 is subtracted from the content addressed by AR3 and the result
is stored in AC0.

 Subtraction SUB

5-613Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[6] ACy = ACy – (ACx << Tx) Yes 2 1 X

Opcode 0101 101E DDSS ss01

Operands ACx, ACy, Tx

Description This instruction subtracts an accumulator content ACx shifted by the content
of Tx from an accumulator content ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (AC1 << T0) The content of AC1 shifted by the content of T0 is subtracted from the content of
AC0 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-614 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[7] ACy = ACy – (ACx << #SHIFTW) Yes 3 1 X

Opcode 0001 000E DDSS 0100 xxSH IFTW

Operands ACx, ACy, SHIFTW

Description This instruction subtracts an accumulator content ACx shifted by the 6-bit
value, SHIFTW, from an accumulator content ACy.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC0 – (AC1 << #31) The content of AC1 shifted left by 31 bits is subtracted from the content of AC0
and the result is stored in AC0.

 Subtraction SUB

5-615Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[8] ACy = ACx – (K16 << #16) No 4 1 X

Opcode 0111 1010 KKKK KKKK KKKK KKKK SSDD 001x

Operands ACx, ACy, K16

Description This instruction subtracts the 16-bit signed constant, K16, shifted left by 16 bits
from an accumulator content ACx.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (FFFFh << #16) A signed 16-bit value (FFFFh) shifted left by 16 bits is subtracted from the
content of AC1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-616 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[9] ACy = ACx – (K16 << #SHFT) No 4 1 X

Opcode 0111 0001 KKKK KKKK KKKK KKKK SSDD SHFT

Operands ACx, ACy, K16, SHFT

Description This instruction subtracts the 16-bit signed constant, K16, shifted left by the
4-bit value, SHFT, from an accumulator content ACx.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC1 = AC0 – (#9800h << #5) A signed 16-bit value (9800h) shifted left by 5 bits is subtracted from the
content of AC0 and the result is stored in AC1.

 Subtraction SUB

5-617Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[10] ACy = ACx – (Smem << Tx) No 3 1 X

Opcode 1101 1101 AAAA AAAI SSDD ss01

Operands ACx, ACy, Smem, Tx

Description This instruction subtracts the content of a memory (Smem) location shifted by
the content of Tx from an accumulator content ACx.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1:

� An intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� The 6 LSBs of Tx are used to determine the shift quantity. The 6 LSBs of
Tx define a shift quantity within –32 to +31. When the value is between –32
to –17, a modulo 16 operation transforms the shift quantity to within –16
to –1.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (*AR3 << T0) The content addressed by AR3 shifted by the content of T0 is subtracted from
the content of AC1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-618 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[11] ACy = ACx – (Smem << #16) No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0101

Operands ACx, ACy, Smem

Description This instruction subtracts the content of a memory (Smem) location shifted left
by 16 bits from an accumulator content ACx.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. If the result
of the subtraction generates a borrow, the CARRY status bit is cleared;
otherwise, the CARRY status bit is not affected.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (*AR3 << #16) The content addressed by AR3 shifted left by 16 bits is subtracted from the
content of AC1 and the result is stored in AC0.

 Subtraction SUB

5-619Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[12] ACy = (Smem << #16) – ACx No 3 1 X

Opcode 1101 1110 AAAA AAAI SSDD 0110

Operands ACx, ACy, Smem

Description This instruction subtracts an accumulator content ACx from the content of a
memory (Smem) location shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (*AR3 << #16) – AC1 The content of AC1 is subtracted from the content addressed by AR3 shifted
left by 16 bits and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-620 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[13] ACy = ACx – uns(Smem) – BORROW No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 101u

Operands ACx, ACy, Smem

Description This instruction subtracts the logical complement of the CARRY status bit
(borrow) and the content of a memory (Smem) location from an accumulator
content ACx.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by CARRY, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

 Subtraction SUB

5-621Instruction Set DescriptionsSWPU068E

Example

Syntax Description

AC1 = AC0 – uns(*AR1) – BORROW The complement of the CARRY bit (1) and the unsigned content
addressed by AR1 (F000h) are subtracted from the content of AC0 and
the result is stored in AC1.

Before After

AC0 00 EC00 0000 AC0 00 EC00 0000

AC1 00 0000 0000 AC1 00 EBFF 0FFF

AR1 0302 AR1 0302

302 F000 302 F000

CARRY 0 CARRY 1

SUB Subtraction

Instruction Set Descriptions5-622 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[14] ACy = ACx – uns(Smem) No 3 1 X

Opcode 1101 1111 AAAA AAAI SSDD 111u

Operands ACx, ACy, Smem

Description This instruction subtracts the content of a memory (Smem) location from an
accumulator content ACx.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – uns(*AR3) The unsigned content addressed by AR3 is subtracted from the content of AC1 and
the result is stored in AC0.

 Subtraction SUB

5-623Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[15] ACy = ACx – (uns(Smem) << #SHIFTW) No 4 1 X

Opcode 1111 1001 AAAA AAAI uxSH IFTW SSDD 01xx

Operands ACx, ACy, SHIFTW, Smem

Description This instruction subtracts the content of a memory (Smem) location shifted by
the 6-bit value, SHIFTW, from an accumulator content ACx.

� The operation is performed on 40 bits in the D-unit shifter.

� Input operands are extended to 40 bits according to uns.

� If the optional uns keyword is applied to the input operand, the content
of the memory location is zero extended to 40 bits.

� If the optional uns keyword is not applied to the input operand, the
content of the memory location is sign extended to 40 bits according to
SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – (uns(*AR3) << #31) The unsigned content addressed by AR3 shifted left by 31 bits is
subtracted from the content of AC1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-624 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[16] ACy = ACx – dbl(Lmem) No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 001n

Operands ACx, ACy, Lmem

Description This instruction subtracts the content of data memory operand dbl(Lmem)
from an accumulator content ACx.

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = AC1 – dbl(*AR3+) The content (long word) addressed by AR3 and AR3 + 1 is subtracted from the
content of AC1 and the result is stored in AC0. Because this instruction is a
long-operand instruction, AR3 is incremented by 2 after the execution.

 Subtraction SUB

5-625Instruction Set DescriptionsSWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[17] ACy = dbl(Lmem) – ACx No 3 1 X

Opcode 1110 1101 AAAA AAAI SSDD 010x

Operands ACx, ACy, Lmem

Description This instruction subtracts an accumulator content ACx from the content of data
memory operand dbl(Lmem).

� The data memory operand dbl(Lmem) addresses are aligned:

� if Lmem address is even: most significant word = Lmem, least
significant word = Lmem + 1

� if Lmem address is odd: most significant word = Lmem, least
significant word = Lmem − 1

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured.

Status Bits Affected by M40, SATD, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = dbl(*AR3) – AC1 The content of AC1 is subtracted from the content (long word) addressed by AR3 and
AR3 + 1 and the result is stored in AC0.

SUB Subtraction

Instruction Set Descriptions5-626 SWPU068E

Subtraction

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[18] ACx = (Xmem << #16) – (Ymem << #16) No 3 1 X

Opcode 1000 0001 XXXM MMYY YMMM 01DD

Operands ACx, Xmem, Ymem

Description This instruction subtracts the content of data memory operand Ymem, shifted
left 16 bits, from the content of data memory operand Xmem, shifted left
16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit.

� When an overflow is detected, the accumulator is saturated according to
SATD.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
C54CM = 1, an intermediary shift operation is performed as if M40 is locally
set to 1 and no overflow detection, report, and saturation is done after the
shifting operation.

Status Bits Affected by C54CM, M40, SATD, SXMD

Affects ACOVx, CARRY

Repeat This instruction can be repeated.

Example

Syntax Description

AC0 = (*AR3 << #16) – (*AR4 << #16) The content addressed by AR4 shifted left by 16 bits is subtracted
from the content addressed by AR3 shifted left by 16 bits and the
result is stored in AC0.

 Subtraction with Parallel Store Accumulator Content to Memory SUB::MOV

5-627Instruction Set DescriptionsSWPU068E

Subtraction with Parallel Store Accumulator Content to MemorySUB::MOV

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] ACy = (Xmem << #16) – ACx,
Ymem = HI(ACy << T2)

No 4 1 X

Opcode 1000 0111 XXXM MMYY YMMM SSDD 101x xxxx

Operands ACx, ACy, T2, Xmem, Ymem

Description This instruction performs two operations in parallel: subtraction and store.

The first operation subtracts an accumulator content from the content of data
memory operand Xmem shifted left by 16 bits.

� The operation is performed on 40 bits in the D-unit ALU.

� Input operands are sign extended to 40 bits according to SXMD.

� The shift operation is equivalent to the signed shift instruction.

� Overflow detection and CARRY status bit depends on M40. The
subtraction borrow bit is reported in the CARRY status bit; the borrow bit
is the logical complement of the CARRY status bit. When C54CM = 1, an
intermediary shift operation is performed as if M40 is locally set to 1 and
no overflow detection, report, and saturation is done after the shifting
operation.

� When an overflow is detected, the accumulator is saturated according to
SATD.

The second operation shifts the accumulator ACy by the content of T2 and
stores ACy(31−16) to data memory operand Ymem. If the 16-bit value in T2
is not within –32 to +31, the shift is saturated to –32 or +31 and the shift is
performed with this value.

� The input operand is shifted in the D-unit shifter according to SXMD.

� After the shift, the high part of the accumulator, ACy(31−16), is stored to
the memory location.

Compatibility with C54x devices (C54CM = 1)

When this instruction is executed with M40 = 0, compatibility is ensured. When
this instruction is executed with C54CM = 1, the 6 LSBs of T2 are used to
determine the shift quantity. The 6 LSBs of T2 define a shift quantity within –32
to +31. When the 16-bit value in T2 is between –32 to –17, a modulo 16
operation transforms the shift quantity to within –16 to –1.

SUB::MOV Subtraction with Parallel Store Accumulator Content to Memory

Instruction Set Descriptions5-628 SWPU068E

� If the SST bit = 1 and the SXMD bit = 0, then the saturate and uns keywords
are applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = (Xmem << #16) – ACx,
Ymem = HI(saturate(uns(ACy << T2)))

� If the SST bit = 1 and the SXMD bit = 1, then only the saturate keyword
is applied to the instruction regardless of the optional keywords selected
by the user, with the following syntax:

ACy = (Xmem << #16) – ACx,
Ymem = HI(saturate(ACy << T2))

Status Bits Affected by C54CM, M40, RDM, SATD, SST, SXMD

Affects ACOVy, CARRY

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Addition or Subtraction Conditionally

� Addition or Subtraction Conditionally with Shift

� Addition, Subtraction, or Move Accumulator Content Conditionally

� Dual 16-Bit Addition and Subtraction

� Dual 16-Bit Subtractions

� Dual 16-Bit Subtraction and Addition

� Subtraction

� Subtract Conditionally

Example

Syntax Description

AC0 = (*AR3 << #16) – AC1,
*AR4 = HI(AC0 << T2)

Both instructions are performed in parallel. The content of AC1 is subtracted
from the content addressed by AR3 shifted left by 16 bits and the result is
stored in AC0. The content of AC0 is shifted by the content of T2, and
AC0(31−16) is stored at the address of AR4.

 Swap Accumulator Content (swap) SWAP

5-629Instruction Set DescriptionsSWPU068E

Swap Accumulator ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

swap(ACx, ACy)

[1] swap(AC0, AC2) Yes 2 1 X

[2] swap(AC1, AC3) Yes 2 1 X

Opcode swap(AC0, AC2) 0101 111E 0000 0000

swap(AC1, AC3) 0101 111E 0000 0001

Operands ACx, ACy

Description This instruction performs parallel moves between two accumulators. These
operations are performed in a dedicated datapath independent of the D-unit
operators.

This instruction moves the content of the first accumulator (ACx) to the second
accumulator (ACy), and reciprocally moves the content of the second
accumulator to the first accumulator.

Accumulator swapping is performed in the execute phase of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Pair Content

� Swap Auxiliary Register Content

� Swap Auxiliary and Temporary Register Content

� Swap Temporary Register Content

Example

Syntax Description

swap(AC0, AC2) The content of AC0 is moved to AC2 and the content of AC2 is moved to AC0.

Before After

AC0 01 E500 0030 AC0 00 2800 0200

AC2 00 2800 0200 AC2 01 E500 0030

SWAPP Swap Accumulator Pair Content (swap)

Instruction Set Descriptions5-630 SWPU068E

Swap Accumulator Pair ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] swap(pair(AC0), pair(AC2)) Yes 2 1 X

Opcode 0101 111E 0001 0000

Operands AC0, AC2

Description This instruction performs two parallel moves between four accumulators (AC0
and AC2, AC1 and AC3) in one cycle. These operations are performed in a
dedicated datapath independent of the D-unit operators. Accumulator
swapping is performed in the execute phase of the pipeline.

This instruction performs two parallel moves:

� the content of AC0 to AC2, and reciprocally the content of AC2 to AC0

� the content of AC1 to AC3, and reciprocally the content of AC3 to AC1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Content

� Swap Auxiliary Register Pair Content

� Swap Auxiliary and Temporary Register Pair Content

� Swap Temporary Register Pair Content

Example

Syntax Description

swap(pair(AC0), pair(AC2)) The following two swap instructions are performed in parallel: the content of
AC0 is moved to AC2 and the content of AC2 is moved to AC0, and the content
of AC1 is moved to AC3 and the content of AC3 is moved to AC1.

Before After

AC0 01 E500 0030 AC0 00 2800 0200

AC1 00 FFFF 0000 AC1 00 8800 0800

AC2 00 2800 0200 AC2 01 E500 0030

AC3 00 8800 0800 AC3 00 FFFF 0000

 Swap Auxiliary Register Content (swap) SWAP

5-631Instruction Set DescriptionsSWPU068E

Swap Auxiliary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

swap(ARx, ARy)

[1] swap(AR0, AR1) Yes 2 1 AD

[2] swap(AR0, AR2) Yes 2 1 AD

[3] swap(AR1, AR3) Yes 2 1 AD

Opcode swap(AR0, AR1) 0101 111E 0011 1000

swap(AR0, AR2) 0101 111E 0000 1000

swap(AR1, AR3) 0101 111E 0000 1001

Operands ARx, ARy

Description This instruction performs parallel moves between two auxiliary registers.
These operations are performed in a dedicated datapath independent of the
A-unit operators.

This instruction moves the content of the first auxiliary register (ARx) to the
second auxiliary register (ARy), and reciprocally moves the content of the
second auxiliary register to the first auxiliary register.

Auxiliary register swapping is performed in the address phase of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Content

� Swap Auxiliary and Temporary Register Content

� Swap Auxiliary Register Pair Content

� Swap Temporary Register Content

Example

Syntax Description

swap(AR0, AR2) The content of AR0 is moved to AR2 and the content of AR2 is moved to AR0.

Before After

AR0 6500 AR0 0300

AR2 0300 AR2 6500

SWAPP Swap Auxiliary Register Pair Content (swap)

Instruction Set Descriptions5-632 SWPU068E

Swap Auxiliary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] swap(pair(AR0), pair(AR2)) Yes 2 1 AD

Opcode 0101 111E 0001 1000

Operands AR0, AR2

Description This instruction performs two parallel moves between four auxiliary registers
(AR0 and AR2, AR1 and AR3) in one cycle. These operations are performed
in a dedicated datapath independent of the A-unit operators. Auxiliary register
swapping is performed in the address phase of the pipeline.

This instruction performs two parallel moves:

� the content of AR0 to AR2, and reciprocally the content of AR2 to AR0

� the content of AR1 to AR3, and reciprocally the content of AR3 to AR1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Pair Content

� Swap Auxiliary Register Content

� Swap Auxiliary and Temporary Register Pair Content

� Swap Temporary Register Pair Content

Example

Syntax Description

swap(pair(AR0), pair(AR2)) The following two swap instructions are performed in parallel: the content of
AR0 is moved to AR2 and the content of AR2 is moved to AR0, and the content
of AR1 is moved to AR3 and the content of AR3 is moved to AR1.

Before After

AR0 0200 AR0 6788

AR1 0300 AR1 0200

AR2 6788 AR2 0200

AR3 0200 AR3 0300

 Swap Auxiliary and Temporary Register Content (swap) SWAP

5-633Instruction Set DescriptionsSWPU068E

Swap Auxiliary and Temporary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

swap(ARx, Tx)

[1] swap(AR4, T0) Yes 2 1 AD

[2] swap(AR5, T1) Yes 2 1 AD

[3] swap(AR6, T2) Yes 2 1 AD

[4] swap(AR7, T3) Yes 2 1 AD

Opcode swap(AR4, T0) 0101 111E 0000 1100

swap(AR5, T1) 0101 111E 0000 1101

swap(AR6, T2) 0101 111E 0000 1110

swap(AR7, T3) 0101 111E 0000 1111

Operands ARx, Tx

Description This instruction performs parallel moves between auxiliary registers and
temporary registers. These operations are performed in a dedicated datapath
independent of the A-unit operators.

This instruction moves the content of the auxiliary register (ARx) to the
temporary register (Tx), and reciprocally moves the content of the temporary
register to the auxiliary register.

Auxiliary and temporary register swapping is performed in the address phase
of the pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Content

� Swap Auxiliary Register Content

� Swap Auxiliary and Temporary Register Pair Content

� Swap Auxiliary and Temporary Register Pairs Content

� Swap Temporary Register Content

SWAP Swap Auxiliary and Temporary Register Content (swap)

Instruction Set Descriptions5-634 SWPU068E

Example

Syntax Description

swap(AR4, T0) The content of AR4 is moved to T0 and the content of T0 is moved to AR4.

Before After

T0 6500 T0 0300

AR4 0300 AR4 6500

 Swap Auxiliary and Temporary Register Pair Content (swap) SWAPP

5-635Instruction Set DescriptionsSWPU068E

Swap Auxiliary and Temporary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

swap(pair(ARx), pair(Tx))

[1] swap(pair(AR4), pair(T0)) Yes 2 1 AD

[2] swap(pair(AR6), pair(T2)) Yes 2 1 AD

Opcode swap(pair(AR4), pair(T0)) 0101 111E 0001 1100

swap(pair(AR6), pair(T2)) 0101 111E 0001 1110

Operands ARx, Tx

Description This instruction performs two parallel moves between two auxiliary registers
and two temporary registers in one cycle. These operations are performed in
a dedicated datapath independent of the A-unit operators. Auxiliary and
temporary register swapping is performed in the address phase of the pipeline.

Instruction [1] performs two parallel moves:

� the content of AR4 to T0, and reciprocally the content of T0 to AR4

� the content of AR5 to T1, and reciprocally the content of T1 to AR5

Instruction [2] performs two parallel moves:

� the content of AR6 to T2, and reciprocally the content of T2 to AR6

� the content of AR7 to T3, and reciprocally the content of T3 to AR7

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Pair Content

� Swap Auxiliary Register Pair Content

� Swap Auxiliary and Temporary Register Content

� Swap Auxiliary and Temporary Register Pairs Content

� Swap Temporary Register Pair Content

SWAPP Swap Auxiliary and Temporary Register Pair Content (swap)

Instruction Set Descriptions5-636 SWPU068E

Example

Syntax Description

swap(pair(AR4), pair(T0)) The following two swap instructions are performed in parallel: the content of
AR4 is moved to T0 and the content of T0 is moved to AR4, and the content
of AR5 is moved to T1 and the content of T1 is moved to AR5.

Before After

AR4 0200 AR4 6788

AR5 0300 AR5 0200

T0 6788 T0 0200

T1 0200 T1 0300

 Swap Auxiliary and Temporary Register Pairs Content (swap) SWAP4

5-637Instruction Set DescriptionsSWPU068E

Swap Auxiliary and Temporary Register Pairs ContentSWAP4

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] swap(block(AR4), block(T0)) Yes 2 1 AD

Opcode 0101 111E 0010 1100

Operands AR4, T0

Description This instruction performs four parallel moves between four auxiliary registers
(AR4, AR5, AR6, and AR7) and four temporary registers (T0, T1, T2, and T3)
in one cycle. These operations are performed in a dedicated datapath
independent of the A-unit operators. Auxiliary and temporary register
swapping is performed in the address phase of the pipeline.

This instruction performs four parallel moves:

� the content of AR4 to T0, and reciprocally the content of T0 to AR4

� the content of AR5 to T1, and reciprocally the content of T1 to AR5

� the content of AR6 to T2, and reciprocally the content of T2 to AR6

� the content of AR7 to T3, and reciprocally the content of T3 to AR7

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Auxiliary and Temporary Register Content

� Swap Auxiliary and Temporary Register Pair Content

SWAP4 Swap Auxiliary and Temporary Register Pairs Content (swap)

Instruction Set Descriptions5-638 SWPU068E

Example

Syntax Description

swap (block(AR4), block(T0)) The following four swap instructions are performed in parallel: the content of
AR4 is moved to T0 and the content of T0 is moved to AR4, the content of AR5
is moved to T1 and the content of T1 is moved to AR5, the content of AR6 is
moved to T2 and the content of T2 is moved to AR6, and the content of AR7
is moved to T3 and the content of T3 is moved to AR7.

Before After

AR4 0200 AR4 0030

AR5 0300 AR5 0200

AR6 0240 AR6 3400

AR7 0400 AR7 0FD3

T0 0030 T0 0200

T1 0200 T1 0300

T2 3400 T2 0240

T3 0FD3 T3 0400

 Swap Temporary Register Content (swap) SWAP

5-639Instruction Set DescriptionsSWPU068E

Swap Temporary Register ContentSWAP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

swap(Tx, Ty)

[1] swap(T0, T2) Yes 2 1 AD

[2] swap(T1, T3) Yes 2 1 AD

Opcode swap(T0, T2) 0101 111E 0000 0100

swap(T1, T3) 0101 111E 0000 0101

Operands Tx, Ty

Description This instruction performs parallel moves between two temporary registers.
These operations are performed in a dedicated datapath independent of the
A-unit operators.

This instruction moves the content of the first temporary register (Tx) to the
second temporary register (Ty), and reciprocally moves the content of the
second temporary register to the first temporary register.

Temporary register swapping is performed in the address phase of the
pipeline.

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Content

� Swap Auxiliary Register Content

� Swap Auxiliary and Temporary Register Content

� Swap Temporary Register Pair Content

Example

Syntax Description

swap(T0, T2) The content of T0 is moved to T2 and the content of T2 is moved to T0.

Before After

T0 6500 T0 0300

T2 0300 T2 6500

SWAPP Swap Temporary Register Pair Content (swap)

Instruction Set Descriptions5-640 SWPU068E

Swap Temporary Register Pair ContentSWAPP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] swap(pair(T0), pair(T2)) Yes 2 1 AD

Opcode 0101 111E 0001 0100

Operands T0, T2

Description This instruction performs two parallel moves between four temporary registers
(T0 and T2, T1 and T3) in one cycle. These operations are performed in a
dedicated datapath independent of the A-unit operators. Temporary register
swapping is performed in the address phase of the pipeline.

This instruction performs two parallel moves:

� the content of T0 to T2, and reciprocally the content of T2 to T0

� the content of T1 to T3, and reciprocally the content of T3 to T1

Status Bits Affected by none

Affects none

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Swap Accumulator Pair Content

� Swap Auxiliary Register Pair Content

� Swap Auxiliary and Temporary Register Pair Content

� Swap Temporary Register Content

Example

Syntax Description

swap(pair(T0), pair(T2)) The following two swap instructions are performed in parallel: the content of
T0 is moved to T2 and the content of T2 is moved to T0, and the content of T1
is moved to T3 and the content of T3 is moved to T1.

Before After

T0 0200 T0 6788

T1 0300 T1 0200

T2 6788 T2 0200

T3 0200 T3 0300

 Test Accumulator, Auxiliary, or Temporary Register Bit BTST

5-641Instruction Set DescriptionsSWPU068E

Test Accumulator, Auxiliary, or Temporary Register BitBTST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = bit(src, Baddr) No 3 1 X

[2] TC2 = bit(src, Baddr) No 3 1 X

Opcode TC1 1110 1100 AAAA AAAI FSSS 1000

TC2 1110 1100 AAAA AAAI FSSS 1001

Operands Baddr, src, TCx

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction tests a single bit of the source register location as defined by
the bit addressing mode, Baddr. The tested bit is copied into the selected TCx
status bit. The generated bit address must be within:

� 0–39 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–39, 0 is stored into the selected TCx status bit.

� 0–15 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position).

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Set Accumulator, Auxiliary, or Temporary Register Bit

� Test Accumulator, Auxiliary, or Temporary Register Bit Pair

� Test Memory Bit

BTST Test Accumulator, Auxiliary, or Temporary Register Bit

Instruction Set Descriptions5-642 SWPU068E

Example

Syntax Description

TC1 = bit(T0, @#12) The bit at the position defined by the register bit address (12) in T0 is tested and the
tested bit is copied into TC1.

Before After

T0 FE00 T0 FE00

TC1 0 TC1 1

 Test Accumulator, Auxiliary, or Temporary Register Bit Pair BTSTP

5-643Instruction Set DescriptionsSWPU068E

Test Accumulator, Auxiliary, or Temporary Register Bit PairBTSTP

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] bit(src, pair(Baddr)) No 3 1 X

Opcode 1110 1100 AAAA AAAI FSSS 010x

Operands Baddr, src

Description This instruction performs a bit manipulation:

� In the D-unit ALU, if the source (src) register operand is an accumulator.

� In the A-unit ALU, if the source (src) register operand is an auxiliary or
temporary register.

The instruction tests two consecutive bits of the source register location as
defined by the bit addressing mode, Baddr and Baddr + 1. The tested bits are
copied into status bits TC1 and TC2:

� TC1 tests the bit that is defined by Baddr

� TC2 tests the bit defined by Baddr + 1

The generated bit address must be within:

� 0–38 when accessing accumulator bits (only the 6 LSBs of the generated
bit address are used to determine the bit position). If the generated bit
address is not within 0–38:

� If the generated bit address is 39, bit 39 of the register is stored into
TC1 and 0 is stored into TC2.

� In all other cases, 0 is stored into TC1 and TC2.

� 0–14 when accessing auxiliary or temporary register bits (only the 4 LSBs
of the generated address are used to determine the bit position). If the
generated bit address is not within 0–14:

� If the generated bit address is 15, bit 15 of the register is stored into
TC1 and 0 is stored into TC2.

� In all other cases, 0 is stored into TC1 and TC2.

Status Bits Affected by none

Affects TC1, TC2

BTSTP Test Accumulator, Auxiliary, or Temporary Register Bit Pair

Instruction Set Descriptions5-644 SWPU068E

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Accumulator, Auxiliary, or Temporary Register Bit

� Complement Accumulator, Auxiliary, or Temporary Register Bit

� Set Accumulator, Auxiliary, or Temporary Register Bit

� Test Accumulator, Auxiliary, or Temporary Register Bit

� Test Memory Bit

Example

Syntax Description

bit(AC0, pair(AR1(T0))) The bit at the position defined by the content of AR1(T0) in AC0 is tested and the
tested bit is copied into TC1. The bit at the position defined by the content of
AR1(T0) + 1 in AC0 is tested and the tested bit is copied into TC2.

Before After

AC0 E0 1234 0000 AC0 E0 1234 0000

AR1 0026 AR1 0026

T0 0001 T0 0001

TC1 0 TC1 1

TC2 0 TC2 0

 Test Memory Bit BTST

5-645Instruction Set DescriptionsSWPU068E

Test Memory BitBTST

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TCx = bit(Smem, src) No 3 1 X

[2] TCx = bit(Smem, k4) No 3 1 X

Description These instructions perform a bit manipulation in the A-unit ALU. These
instructions test a single bit of a memory (Smem) location. The bit tested is
defined by either the content of the source (src) operand or a 4-bit immediate
value, k4. The tested bit is copied into the selected TCx status bit.

For instruction [1], the generated bit address must be within 0–15 (only the
4 LSBs of the register are used to determine the bit position).

Status Bits Affected by none

Affects TCx

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Memory Bit

� Set Memory Bit

� Test Accumulator, Auxiliary, or Temporary Register Bit

� Test Accumulator, Auxiliary, or Temporary Register Bit Pair

� Test and Clear Memory Bit

� Test and Complement Memory Bit

� Test and Set Memory Bit

BTST Test Memory Bit

Instruction Set Descriptions5-646 SWPU068E

Test Memory Bit

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1a] TC1 = bit(Smem, src) No 3 1 X

[1b] TC2 = bit(Smem, src) No 3 1 X

Opcode TC1 1110 0000 AAAA AAAI FSSS xxx0

TC2 1110 0000 AAAA AAAI FSSS xxx1

Operands Smem, src, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. This instruction
tests a single bit of a memory (Smem) location. The bit tested is defined by the
content of the source (src) operand. The tested bit is copied into the selected
TCx status bit.

The generated bit address must be within 0–15 (only the 4 LSBs of the register
are used to determine the bit position).

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC1 = bit(*AR0, AC0) The bit at the position defined by AC0(3–0) in the content addressed by AR0 is
tested and the tested bit is copied into TC1.

Before After

AC0 00 0000 0008 AC0 00 0000 0008

*AR0 00C0 *AR0 00C0

TC1 0 TC1 0

 Test Memory Bit BTST

5-647Instruction Set DescriptionsSWPU068E

Test Memory Bit

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[2a] TC1 = bit(Smem, k4) No 3 1 X

[2b] TC2 = bit(Smem, k4) No 3 1 X

Opcode TC1 1101 1100 AAAA AAAI kkkk xx00

TC2 1101 1100 AAAA AAAI kkkk xx01

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. This instruction
tests a single bit of a memory (Smem) location. The bit tested is defined by a
4-bit immediate value, k4. The tested bit is copied into the selected TCx status
bit.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

Example

Syntax Description

TC1 = bit(*AR3, #12) The bit at the position defined by an unsigned 4-bit value (12) in the content
addressed by AR3 is tested and the tested bit is copied into TC1.

BTSTCLR Test and Clear Memory Bit

Instruction Set Descriptions5-648 SWPU068E

Test and Clear Memory BitBTSTCLR

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = bit(Smem, k4), bit(Smem, k4) = #0 No 3 1 X

[2] TC2 = bit(Smem, k4), bit(Smem, k4) = #0 No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 010x

TC2 1110 0011 AAAA AAAI kkkk 011x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location. The tested bit is copied into status bit TCx and is cleared to
0 in Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Memory Bit

� Set Memory Bit

� Test and Complement Memory Bit

� Test and Set Memory Bit

� Test Memory Bit

Example

Syntax Description

TC1 = bit(*AR3, #12), bit(*AR3, #12) = #0 The bit at the position defined by the unsigned 4-bit value (12) in
the content addressed by AR3 is tested and the tested bit is copied
into TC1. The selected bit (12) in the content addressed by AR3
is cleared to 0.

 Test and Complement Memory Bit BTSTNOT

5-649Instruction Set DescriptionsSWPU068E

Test and Complement Memory BitBTSTNOT

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = bit(Smem, k4), cbit(Smem, k4) No 3 1 X

[2] TC2 = bit(Smem, k4), cbit(Smem, k4) No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 100x

TC2 1110 0011 AAAA AAAI kkkk 101x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location and the tested bit is copied into status bit TCx and is
complemented in Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Memory Bit

� Set Memory Bit

� Test and Clear Memory Bit

� Test and Set Memory Bit

� Test Memory Bit

Example

Syntax Description

TC1 = bit(*AR0, #12), cbit(*AR0, #12) The bit at the position defined by the unsigned 4-bit value (12) in the
content addressed by AR0 is tested and the tested bit is copied into
TC1. The selected bit (12) in the content addressed by AR0 is
complemented.

Before After

*AR0 0040 *AR0 1040

TC1 0 TC1 0

BTSTSET Test and Set Memory Bit

Instruction Set Descriptions5-650 SWPU068E

Test and Set Memory BitBTSTSET

Syntax Characteristics

No. Syntax
Parallel

Enable Bit Size Cycles Pipeline

[1] TC1 = bit(Smem, k4), bit(Smem, k4) = #1 No 3 1 X

[2] TC2 = bit(Smem, k4), bit(Smem, k4) = #1 No 3 1 X

Opcode TC1 1110 0011 AAAA AAAI kkkk 000x

TC2 1110 0011 AAAA AAAI kkkk 001x

Operands k4, Smem, TCx

Description This instruction performs a bit manipulation in the A-unit ALU. The instruction
tests a single bit, as defined by a 4-bit immediate value, k4, of a memory
(Smem) location. The tested bit is copied into status bit TCx and is set to 1 in
Smem.

Status Bits Affected by none

Affects TCx

Repeat This instruction can be repeated.

See Also See the following other related instructions:

� Clear Memory Bit

� Complement Memory Bit

� Set Memory Bit

� Test and Clear Memory Bit

� Test and Complement Memory Bit

� Test Memory Bit

Example

Syntax Description

TC1 = bit(*AR3, #12), bit(*AR3, #12) = #1 The bit at the position defined by the unsigned 4-bit value (12) in
the content addressed by AR3 is tested and the tested bit is copied
into TC1. The selected bit (12) in the content addressed by AR3
is set to 1.

6-1

Instruction Opcodes in Sequential Order

This chapter provides the opcode in sequential order for each
TMS320C55x™ DSP instruction syntax.

Topic Page

6.1 Instruction Set Opcodes 6-2.

6.2 Instruction Set Opcode Symbols and Abbreviations 6-19.

Chapter 6

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-2 SWPU068E

6.1 Instruction Set Opcodes

Table 6−1 lists the opcodes of the instruction set. See Table 6−2 (page 6-19)
for a list of the symbols and abbreviations used in the instruction set opcode.
See Table 1−1 (page 1-2) and Table 1−2 (page 1-6) for a list of the terms,
symbols, and abbreviations used in the algebraic syntax.

Table 6−1. Instruction Set Opcodes

Opcode Algebraic syntax

0000000E xCCCCCCC kkkkkkkk while (cond && (RPTC < k8)) repeat

0000001E xCCCCCCC xxxxxxxx if (cond) return

0000010E xCCCCCCC LLLLLLLL if (cond) goto L8

0000011E LLLLLLLL LLLLLLLL goto L16

0000100E LLLLLLLL LLLLLLLL call L16

0000110E kkkkkkkk kkkkkkkk repeat(k16)

0000111E llllllll llllllll blockrepeat{}

0001000E DDSS0000 xxSHIFTW ACy = ACy & (ACx <<< #SHIFTW)

0001000E DDSS0001 xxSHIFTW ACy = ACy | (ACx <<< #SHIFTW)

0001000E DDSS0010 xxSHIFTW ACy = ACy ^ (ACx <<< #SHIFTW)

0001000E DDSS0011 xxSHIFTW ACy = ACy + (ACx << #SHIFTW)

0001000E DDSS0100 xxSHIFTW ACy = ACy − (ACx << #SHIFTW)

0001000E DDSS0101 xxSHIFTW ACy = ACx << #SHIFTW

0001000E DDSS0110 xxSHIFTW ACy = ACx <<C #SHIFTW

0001000E DDSS0111 xxSHIFTW ACy = ACx <<< #SHIFTW

0001000E xxSS1000 xxddxxxx Tx = exp(ACx)

0001000E DDSS1001 xxddxxxx ACy = mant(ACx), Tx = −exp(ACx)

0001000E xxSS1010 SSddxxxt Tx = count(ACx,ACy,TCx)

0001000E DDSS1100 SSDDnnnn max_diff(ACx,ACy,ACz,ACw)

0001000E DDSS1101 SSDDxxxr max_diff_dbl(ACx,ACy,ACz,ACw,TRNx)

0001000E DDSS1110 SSDDxxxx min_diff(ACx,ACy,ACz,ACw)

0001000E DDSS1111 SSDDxxxr min_diff_dbl(ACx,ACy,ACz,ACw,TRNx)

0001001E FSSScc00 FDDDxuxt TCx = uns(src RELOP dst)

0001001E FSSScc01 FDDD0utt TCx = TCy & uns(src RELOP dst)

0001001E FSSScc01 FDDD1utt TCx = !TCy & uns(src RELOP dst)

0001001E FSSScc10 FDDD0utt TCx = TCy | uns(src RELOP dst)

0001001E FSSScc10 FDDD1utt TCx = !TCy | uns(src RELOP dst)

0001001E FSSSxx11 FDDD0xvv dst = BitOut \\ src \\ BitIn

Instruction Set Opcodes

6-3Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

0001001E FSSSxx11 FDDD1xvv dst = BitIn // src // BitOut

0001010E FSSSxxxx FDDD0000 mar(TAy + TAx)

0001010E FSSSxxxx FDDD0001 mar(TAy = TAx)

0001010E FSSSxxxx FDDD0010 mar(TAy – TAx)

0001010E PPPPPPPP FDDD0100 mar(TAx + P8)

0001010E PPPPPPPP FDDD0101 mar(TAx = P8)

0001010E PPPPPPPP FDDD0110 mar(TAx – P8)

0001010E FSSSxxxx FDDD1000 mar(TAy + TAx)

0001010E FSSSxxxx FDDD1001 mar(TAy = TAx)

0001010E FSSSxxxx FDDD1010 mar(TAy – TAx)

0001010E PPPPPPPP FDDD1100 mar(TAx + P8)

0001010E PPPPPPPP FDDD1101 mar(TAx = P8)

0001010E PPPPPPPP FDDD1110 mar(TAx – P8)

0001010E XACS0001 XACD0000
(Note: for DAG_X)

mar(XACdst + XACsrc)

0001010E XACS0001 XACD0001
(Note: for DAG_X)

mar(XACdst = XACsrc)

0001010E XACS0001 XACD0010
(Note: for DAG_X)

mar(XACdst − XACsrc)

0001010E XACS0001 XACD1000
(Note: for DAG_Y)

mar(XACdst + XACsrc)

0001010E XACS0001 XACD1001
(Note: for DAG_Y)

mar(XACdst = XACsrc)

0001010E XACS0001 XACD1010
(Note: for DAG_Y)

mar(XACdst − XACsrc)

0001011E xxxxxkkk kkkk0000 DPH = k7

0001011E xxxkkkkk kkkk0011 PDP = k9

0001011E kkkkkkkk kkkk0100 BK03 = k12

0001011E kkkkkkkk kkkk0101 BK47 = k12

0001011E kkkkkkkk kkkk0110 BKC = k12

0001011E kkkkkkkk kkkk1000 CSR = k12

0001011E kkkkkkkk kkkk1001 BRC0 = k12

0001011E kkkkkkkk kkkk1010 BRC1 = k12

0001100E kkkkkkkk FDDDFSSS dst = src & k8

0001101E kkkkkkkk FDDDFSSS dst = src | k8

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-4 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

0001110E kkkkkkkk FDDDFSSS dst = src ^ k8

0001111E KKKKKKKK SSDDxx0% ACy = rnd(ACx * K8)

0001111E KKKKKKKK SSDDss1% ACy = rnd(ACx + (Tx * K8))

0010000E nop

0010001E FSSSFDDD dst = src

0010010E FSSSFDDD dst = dst + src

0010011E FSSSFDDD dst = dst − src

0010100E FSSSFDDD dst = dst & src

0010101E FSSSFDDD dst = dst | src

0010110E FSSSFDDD dst = dst ^ src

0010111E FSSSFDDD dst = max(src, dst)

0011000E FSSSFDDD dst = min(src, dst)

0011001E FSSSFDDD dst = |src|

0011010E FSSSFDDD dst = −src

0011011E FSSSFDDD dst = ~src

0011100E FSSSFDDD
(Note: FSSS = src1, FDDD = src2)

push(src1, src2)

0011101E FSSSFDDD
(Note: FSSS = dst1, FDDD = dst2)

dst1, dst2 = pop()

0011110E kkkkFDDD dst = k4

0011111E kkkkFDDD dst = −k4

0100000E kkkkFDDD dst = dst + k4

0100001E kkkkFDDD dst = dst − k4

01000101 11110010 lock()

0100010E 00SSFDDD TAx = HI(ACx)

0100010E 01x0FDDD dst = dst >> #1

0100010E 01x1FDDD dst = dst << #1

0100010E 1000FDDD TAx = SP

0100010E 1001FDDD TAx = SSP

0100010E 1010FDDD TAx = CDP

0100010E 1100FDDD TAx = BRC0

0100010E 1101FDDD TAx = BRC1

0100010E 1110FDDD TAx = RPTC

Instruction Set Opcodes

6-5Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

0100011E kkkk0000 bit(ST0, k4) = #0

0100011E kkkk0001 bit(ST0, k4) = #1

0100011E kkkk0010 bit(ST1, k4) = #0

0100011E kkkk0011 bit(ST1, k4) = #1

0100011E kkkk0100 bit(ST2, k4) = #0

0100011E kkkk0101 bit(ST2, k4) = #1

0100011E kkkk0110 bit(ST3, k4) = #0

0100011E kkkk0111 bit(ST3, k4) = #1

0100100E xxxxx000 repeat(CSR)

0100100E FSSSx001 repeat(CSR), CSR += TAx

0100100E kkkkx010 repeat(CSR), CSR += k4

0100100E kkkkx011 repeat(CSR), CSR −= k4

0100100E xxxxx100 return

01001000 xxxxx100 return_int

0100101E 0LLLLLLL goto L7

0100101E 1lllllll localrepeat{}

0100110E kkkkkkkk repeat(k8)

0100111E KKKKKKKK SP = SP + K8

0101000E FDDDx000 dst = dst <<< #1

0101000E FDDDx001 dst = dst >>> #1

0101000E FDDDx010 dst = pop()

0101000E xxDDx011 ACx = dbl(pop())

0101000E FSSSx110 push(src)

0101000E xxSSx111 dbl(push(ACx))

0101000E XDDD0100 xdst = popboth()

0101000E XSSS0101 pshboth(xsrc)

0101001E FSSS00DD HI(ACx) = TAx

0101001E FSSS1000 SP = TAx

0101001E FSSS1001 SSP = TAx

0101001E FSSS1010 CDP = TAx

0101001E FSSS1100 CSR = TAx

0101001E FSSS1101 BRC1 = TAx

0101001E FSSS1110 BRC0 = TAx

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-6 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

0101010E DDSS000% ACy = rnd(ACy + |ACx|)

0101010E DDSS001% ACy = rnd(ACy + (ACx * ACx))

0101010E DDSS010% ACy = rnd(ACy − (ACx * ACx))

0101010E DDSS011% ACy = rnd(ACy * ACx)

0101010E DDSS100% ACy = rnd(ACx * ACx)

0101010E DDSS101% ACy = rnd(ACx)

0101010E DDSS110% ACy = saturate(rnd(ACx))

0101011E DDSSss0% ACy = rnd(ACy + (ACx * Tx))

0101011E DDSSss1% ACy = rnd(ACy − (ACx * Tx))

0101100E DDSSss0% ACy = rnd(ACx * Tx)

0101100E DDSSss1% ACy = rnd((ACy * Tx) + ACx)

0101101E DDSSss00 ACy = ACy + (ACx << Tx)

0101101E DDSSss01 ACy = ACy − (ACx << Tx)

0101101E DDxxxx1t ACx = sftc(ACx,TCx)

0101110E DDSSss00 ACy = ACx <<< Tx

0101110E DDSSss01 ACy = ACx << Tx

0101110E DDSSss10 ACy = ACx <<C Tx

0101111E 00kkkkkk swap()

01100lll lCCCCCCC if (cond) goto l4

01101000 xCCCCCCC PPPPPPPP PPPPPPPP
PPPPPPPP

if (cond) goto P24

01101001 xCCCCCCC PPPPPPPP PPPPPPPP
PPPPPPPP

if (cond) call P24

01101010 PPPPPPPP PPPPPPPP PPPPPPPP goto P24

01101100 PPPPPPPP PPPPPPPP PPPPPPPP call P24

01101101 xCCCCCCC LLLLLLLL LLLLLLLL if (cond) goto L16

01101110 xCCCCCCC LLLLLLLL LLLLLLLL if (cond) call L16

01101111 FSSSccxu KKKKKKKK LLLLLLLL compare (uns(src RELOP K8)) goto L8

01110000 KKKKKKKK KKKKKKKK SSDDSHFT ACy = ACx + (K16 << #SHFT)

01110001 KKKKKKKK KKKKKKKK SSDDSHFT ACy = ACx − (K16 << #SHFT)

01110010 kkkkkkkk kkkkkkkk SSDDSHFT ACy = ACx & (k16 <<< #SHFT)

01110011 kkkkkkkk kkkkkkkk SSDDSHFT ACy = ACx | (k16 <<< #SHFT)

01110100 kkkkkkkk kkkkkkkk SSDDSHFT ACy = ACx ^ (k16 <<< #SHFT)

Instruction Set Opcodes

6-7Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

01110101 KKKKKKKK KKKKKKKK xxDDSHFT ACx = K16 << #SHFT

01110110 kkkkkkkk kkkkkkkk FDDD00SS dst = field_extract(ACx,k16)

01110110 kkkkkkkk kkkkkkkk FDDD01SS dst = field_expand(ACx,k16)

01110110 KKKKKKKK KKKKKKKK FDDD10xx dst = K16

01110111 DDDDDDDD DDDDDDDD FDDDxxxx mar(TAx = D16)

01111000 kkkkkkkk kkkkkkkk xxx0000x DP = k16

01111000 kkkkkkkk kkkkkkkk xxx0001x SSP = k16

01111000 kkkkkkkk kkkkkkkk xxx0010x CDP = k16

01111000 kkkkkkkk kkkkkkkk xxx0011x BSA01 = k16

01111000 kkkkkkkk kkkkkkkk xxx0100x BSA23 = k16

01111000 kkkkkkkk kkkkkkkk xxx0101x BSA45 = k16

01111000 kkkkkkkk kkkkkkkk xxx0110x BSA67 = k16

01111000 kkkkkkkk kkkkkkkk xxx0111x BSAC = k16

01111000 kkkkkkkk kkkkkkkk xxx1000x SP = k16

01111001 KKKKKKKK KKKKKKKK SSDDxx0% ACy = rnd(ACx * K16)

01111001 KKKKKKKK KKKKKKKK SSDDss1% ACy = rnd(ACx + (Tx * K16))

01111010 KKKKKKKK KKKKKKKK SSDD000x ACy = ACx + (K16 << #16)

01111010 KKKKKKKK KKKKKKKK SSDD001x ACy = ACx − (K16 << #16)

01111010 kkkkkkkk kkkkkkkk SSDD010x ACy = ACx & (k16 <<< #16)

01111010 kkkkkkkk kkkkkkkk SSDD011x ACy = ACx | (k16 <<< #16)

01111010 kkkkkkkk kkkkkkkk SSDD100x ACy = ACx ^ (k16 <<< #16)

01111010 KKKKKKKK KKKKKKKK xxDD101x ACx = K16 << #16

01111010 xxxxxxxx xxxxxxxx xxxx110x idle

01111011 KKKKKKKK KKKKKKKK FDDDFSSS dst = src + K16

01111100 KKKKKKKK KKKKKKKK FDDDFSSS dst = src − K16

01111101 kkkkkkkk kkkkkkkk FDDDFSSS dst = src & k16

01111110 kkkkkkkk kkkkkkkk FDDDFSSS dst = src | k16

01111111 kkkkkkkk kkkkkkkk FDDDFSSS dst = src ^ k16

10000000 XXXMMMYY YMMM00xx dbl(Ymem) = dbl(Xmem)

10000000 XXXMMMYY YMMM01xx Ymem = Xmem

10000000 XXXMMMYY YMMM10SS Xmem = LO(ACx),
Ymem = HI(ACx)

10000001 XXXMMMYY YMMM00DD ACx = (Xmem << #16) + (Ymem << #16)

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-8 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

10000001 XXXMMMYY YMMM01DD ACx = (Xmem << #16) − (Ymem << #16)

10000001 XXXMMMYY YMMM10DD LO(ACx) = Xmem,
HI(ACx) = Ymem

10000010 XXXMMMYY YMMM00mm uuDDDDg% ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

10000010 XXXMMMYY YMMM01mm uuDDDDg% ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

10000010 XXXMMMYY YMMM10mm uuDDDDg% ACx = M40(rnd(ACx − (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

10000010 XXXMMMYY YMMM11mm uuxxDDg% mar(Xmem),
ACx = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

10000011 XXXMMMYY YMMM00mm uuDDDDg% ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

10000011 XXXMMMYY YMMM01mm uuDDDDg% ACx = M40(rnd(ACx − (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

10000011 XXXMMMYY YMMM10mm uuDDDDg% ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

10000011 XXXMMMYY YMMM11mm uuxxDDg% mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

10000100 XXXMMMYY YMMM00mm uuDDDDg% ACx = M40(rnd(ACx − (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

10000100 XXXMMMYY YMMM01mm uuxxDDg% mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

10000100 XXXMMMYY YMMM10mm uuDDDDg% ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

10000100 XXXMMMYY YMMM11mm uuDDDDg% ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(coef(Cmem)))))

10000101 XXXMMMYY YMMM00mm uuxxDDg% mar(Xmem),
ACx = M40(rnd(ACx − (uns(Ymem) * uns(coef(Cmem)))))

10000101 XXXMMMYY YMMM01mm uuDDDDg% ACx = M40(rnd(ACx − (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy − (uns(Ymem) * uns(coef(Cmem)))))

10000101 XXXMMMYY YMMM10mm xxxxxxxx mar(Xmem) ,mar(Ymem) ,mar(coef(Cmem))

Instruction Set Opcodes

6-9Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

10000101 XXXMMMYY YMMM11mm DDx0DDU% firs(Xmem, Ymem, coef(Cmem), ACx, ACy)

10000101 XXXMMMYY YMMM11mm DDx1DDU% firsn(Xmem, Ymem, coef(Cmem), ACx, ACy)

10000110 XXXMMMYY YMMMxxDD 000guuU% ACx = M40(rnd(uns(Xmem) * uns(Ymem)))
[,T3 = Xmem]

10000110 XXXMMMYY YMMMSSDD 001guuU% ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))
[,T3 = Xmem]

10000110 XXXMMMYY YMMMSSDD 010guuU% ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))
[,T3 = Xmem]

10000110 XXXMMMYY YMMMSSDD 011guuU% ACy = M40(rnd(ACx − (uns(Xmem) * uns(Ymem))))
[,T3 = Xmem]

10000110 XXXMMMYY YMMMDDDD 100xssU% ACx = rnd(ACx − (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

10000110 XXXMMMYY YMMMDDDD 101xssU% ACx = rnd(ACx + (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

10000110 XXXMMMYY YMMMDDDD 110xxxx% lms(Xmem, Ymem, ACx, ACy)

10000110 XXXMMMYY YMMMDDDD 1110xxn% sqdst(Xmem, Ymem, ACx, ACy)

10000110 XXXMMMYY YMMMDDDD 1111xxn% abdst(Xmem, Ymem, ACx, ACy)

10000111 XXXMMMYY YMMMSSDD 000xssU% ACy = rnd(Tx * Xmem),
Ymem = HI(ACx << T2) [,T3 = Xmem]

10000111 XXXMMMYY YMMMSSDD 001xssU% ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

10000111 XXXMMMYY YMMMSSDD 010xssU% ACy = rnd(ACy − (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

10000111 XXXMMMYY YMMMSSDD 01100001 lmsf(Xmem, Ymem, ACx, ACy)

10000111 XXXMMMYY YMMMSSDD 100xxxxx ACy = ACx + (Xmem << #16),
Ymem = HI(ACy << T2)

10000111 XXXMMMYY YMMMSSDD 101xxxxx ACy = (Xmem << #16) − ACx,
Ymem = HI(ACy << T2)

10000111 XXXMMMYY YMMMSSDD 110xxxxx ACy = Xmem << #16,
Ymem = HI(ACx << T2)

10010000 XSSSXDDD xdst = xsrc

10010001 xxxxxxSS goto ACx

10010010 XXXMMMYY YMMM00mm uuDDDDg% ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

10010010 XXXMMMYY YMMM01mm uuDDDDg% ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) *
uns(LO(coef(Cmem)))))

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-10 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

10010010 XXXMMMYY YMMM10mm uuDDDDg% ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) *
uns(LO(coef(Cmem)))))

10010010 xxxxxxSS call ACx

10010011 XXXMMMYY YMMM00mm uuDDDDg% ACy = M40(rnd(ACy + uns(Ymem) *
uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) *
uns(LO(coef(Cmem)))))

10010011 XXXMMMYY YMMM01mm uuDDDDg% ACy = M40(rnd(ACy + uns(Ymem) *
uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) *
uns(LO(coef(Cmem)))))

10010011 XXXMMMYY YMMM10mm uuDDDDg% ACy = M40(rnd(ACy + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

10010011 XXXMMMYY YMMM11mm uuDDDDg% ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

10010100 XXXMMMYY YMMM00mm uuDDDDg% ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

10010100 XXXMMMYY YMMM10mm uuDDDDg% ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

10010100 xxxxxxxx reset

10010101 0xxkkkkk intr(k5)

10010101 1xxkkkkk trap(k5)

10010101 XXXMMMYY YMMM01mm uuDDDDg% ACy = M40(rnd(ACy − (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) *
uns(LO(coef(Cmem))))))

10010110 0CCCCCCC if (cond) execute(AD_unit)

10010110 1CCCCCCC if (cond) execute(D_unit)

10011000 mmap()

10011001 readport()

10011010 writeport()

Instruction Set Opcodes

6-11Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

10011100 linear()

10011101 circular()

10011110 0CCCCCCC if (cond) execute(AD_unit)

10011110 1CCCCCCC if (cond) execute(D_unit)

10011111 0CCCCCCC if (cond) execute(AD_unit)

10011111 1CCCCCCC if (cond) execute(D_unit)

1010FDDD AAAAAAAI dst = Smem

101100DD AAAAAAAI ACx = Smem << #16

10110100 AAAAAAAI mar(Smem)

10110101 AAAAAAAI push(Smem)

10110110 AAAAAAAI delay(Smem)

10110111 AAAAAAAI push(dbl(Lmem))

10111000 AAAAAAAI dbl(Lmem) = pop()

10111011 AAAAAAAI Smem = pop()

101111SS AAAAAAAI Smem = HI(ACx)

1100FSSS AAAAAAAI Smem = src

11010000 AAAAAAAI 0%DD01mm ACx = rnd(Smem * uns(coef(Cmem)))

11010000 AAAAAAAI 0%DD10mm ACx = rnd(ACx + (Smem * uns(coef(Cmem))))

11010000 AAAAAAAI 0%DD11mm ACx = rnd(ACx − (Smem * uns(coef(Cmem))))

11010000 AAAAAAAI U%DDxxmm ACx = rnd(ACx + (Smem * coef(Cmem))) [,T3 = Smem],
delay(Smem)

11010001 AAAAAAAI U%DD00mm ACx = rnd(Smem * coef(Cmem)) [,T3 = Smem]

11010001 AAAAAAAI U%DD01mm ACx = rnd(ACx + (Smem * coef(Cmem))) [,T3 = Smem]

11010001 AAAAAAAI U%DD10mm ACx = rnd(ACx − (Smem * coef(Cmem))) [,T3 = Smem]

11010010 AAAAAAAI U%DD00SS ACy = rnd(ACy + (Smem * ACx)) [,T3 = Smem]

11010010 AAAAAAAI U%DD01SS ACy = rnd(ACy − (Smem * ACx)) [,T3 = Smem]

11010010 AAAAAAAI U%DD10SS ACy = rnd(ACx + (Smem * Smem)) [,T3 = Smem]

11010010 AAAAAAAI U%DD11SS ACy = rnd(ACx − (Smem * Smem)) [,T3 = Smem]

11010011 AAAAAAAI U%DD00SS ACy = rnd(Smem * ACx) [,T3 = Smem]

11010011 AAAAAAAI U%DD10xx ACx = rnd(Smem * Smem) [,T3 = Smem]

11010011 AAAAAAAI U%DDu1ss ACx = rnd(uns(Tx * Smem)) [,T3 = Smem]

11010100 AAAAAAAI U%DDssSS ACy = rnd(ACx + (Tx * Smem)) [,T3 = Smem]

11010101 AAAAAAAI U%DDssSS ACy = rnd(ACx − (Tx * Smem)) [,T3 = Smem]

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-12 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11010110 AAAAAAAI FDDDFSSS dst = src + Smem

11010111 AAAAAAAI FDDDFSSS dst = src − Smem

11011000 AAAAAAAI FDDDFSSS dst = Smem − src

11011001 AAAAAAAI FDDDFSSS dst = src & Smem

11011010 AAAAAAAI FDDDFSSS dst = src | Smem

11011011 AAAAAAAI FDDDFSSS dst = src ^ Smem

11011100 AAAAAAAI kkkkxx00 TC1 = bit(Smem, k4)

11011100 AAAAAAAI kkkkxx01 TC2 = bit(Smem, k4)

11011100 AAAAAAAI 0000xx10 DP = Smem

11011100 AAAAAAAI 0001xx10 CDP = Smem

11011100 AAAAAAAI 0010xx10 BSA01 = Smem

11011100 AAAAAAAI 0011xx10 BSA23 = Smem

11011100 AAAAAAAI 0100xx10 BSA45 = Smem

11011100 AAAAAAAI 0101xx10 BSA67 = Smem

11011100 AAAAAAAI 0110xx10 BSAC = Smem

11011100 AAAAAAAI 0111xx10 SP = Smem

11011100 AAAAAAAI 1000xx10 SSP = Smem

11011100 AAAAAAAI 1001xx10 BK03 = Smem

11011100 AAAAAAAI 1010xx10 BK47 = Smem

11011100 AAAAAAAI 1011xx10 BKC = Smem

11011100 AAAAAAAI 1100xx10 DPH = Smem

11011100 AAAAAAAI 1111xx10 PDP = Smem

11011100 AAAAAAAI x000xx11 CSR = Smem

11011100 AAAAAAAI x001xx11 BRC0 = Smem

11011100 AAAAAAAI x010xx11 BRC1 = Smem

11011100 AAAAAAAI x011xx11 TRN0 = Smem

11011100 AAAAAAAI x100xx11 TRN1 = Smem

11011101 AAAAAAAI SSDDss00 ACy = ACx + (Smem << Tx)

11011101 AAAAAAAI SSDDss01 ACy = ACx − (Smem << Tx)

11011101 AAAAAAAI SSDDss10 ACy = ads2c(Smem, ACx, Tx, TC1, TC2)

11011101 AAAAAAAI x%DDss11 ACx = rnd(Smem << Tx)

11011110 AAAAAAAI SSDD0000 ACy = adsc(Smem, ACx, TC1)

11011110 AAAAAAAI SSDD0001 ACy = adsc(Smem, ACx, TC2)

Instruction Set Opcodes

6-13Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11011110 AAAAAAAI SSDD0010 ACy = adsc(Smem, ACx, TC1, TC2)

11011110 AAAAAAAI SSDD0011 subc(Smem, ACx, ACy)

11011110 AAAAAAAI SSDD0100 ACy = ACx + (Smem << #16)

11011110 AAAAAAAI SSDD0101 ACy = ACx − (Smem << #16)

11011110 AAAAAAAI SSDD0110 ACy = (Smem << #16) − ACx

11011110 AAAAAAAI ssDD1000 HI(ACx) = Smem + Tx,
LO(ACx) = Smem − Tx

11011110 AAAAAAAI ssDD1001 HI(ACx) = Smem – Tx,
LO(ACx) = Smem + Tx

11011111 AAAAAAAI FDDD000u dst = uns(high_byte(Smem))

11011111 AAAAAAAI FDDD001u dst = uns(low_byte(Smem))

11011111 AAAAAAAI xxDD010u ACx = uns(Smem)

11011111 AAAAAAAI SSDD100u ACy = ACx + uns(Smem) + CARRY

11011111 AAAAAAAI SSDD101u ACy = ACx − uns(Smem) − BORROW

11011111 AAAAAAAI SSDD110u ACy = ACx + uns(Smem)

11011111 AAAAAAAI SSDD111u ACy = ACx − uns(Smem)

11100000 AAAAAAAI FSSSxxxt TCx = bit(Smem, src)

11100001 AAAAAAAI DDSHIFTW ACx = low_byte(Smem) << #SHIFTW

11100010 AAAAAAAI DDSHIFTW ACx = high_byte(Smem) << #SHIFTW

11100011 AAAAAAAI kkkk000x TC1 = bit(Smem, k4), bit(Smem, k4) = #1

11100011 AAAAAAAI kkkk001x TC2 = bit(Smem, k4), bit(Smem, k4) = #1

11100011 AAAAAAAI kkkk010x TC1 = bit(Smem, k4), bit(Smem, k4) = #0

11100011 AAAAAAAI kkkk011x TC2 = bit(Smem, k4), bit(Smem, k4) = #0

11100011 AAAAAAAI kkkk100x TC1 = bit(Smem, k4), cbit(Smem, k4)

11100011 AAAAAAAI kkkk101x TC2 = bit(Smem, k4), cbit(Smem, k4)

11100011 AAAAAAAI FSSS1100 bit(Smem, src) = #1

11100011 AAAAAAAI FSSS1101 bit(Smem, src) = #0

11100011 AAAAAAAI FSSS111x cbit(Smem, src)

11100100 AAAAAAAI FSSSx0xx push(src, Smem)

11100100 AAAAAAAI FDDDx1xx dst, Smem = pop()

11100101 AAAAAAAI FSSS01x0 high_byte(Smem) = src

11100101 AAAAAAAI FSSS01x1 low_byte(Smem) = src

11100101 AAAAAAAI 000010xx Smem = DP

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-14 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11100101 AAAAAAAI 000110xx Smem = CDP

11100101 AAAAAAAI 001010xx Smem = BSA01

11100101 AAAAAAAI 001110xx Smem = BSA23

11100101 AAAAAAAI 010010xx Smem = BSA45

11100101 AAAAAAAI 010110xx Smem = BSA67

11100101 AAAAAAAI 011010xx Smem = BSAC

11100101 AAAAAAAI 011110xx Smem = SP

11100101 AAAAAAAI 100010xx Smem = SSP

11100101 AAAAAAAI 100110xx Smem = BK03

11100101 AAAAAAAI 101010xx Smem = BK47

11100101 AAAAAAAI 101110xx Smem = BKC

11100101 AAAAAAAI 110010xx Smem = DPH

11100101 AAAAAAAI 111110xx Smem = PDP

11100101 AAAAAAAI x00011xx Smem = CSR

11100101 AAAAAAAI x00111xx Smem = BRC0

11100101 AAAAAAAI x01011xx Smem = BRC1

11100101 AAAAAAAI x01111xx Smem = TRN0

11100101 AAAAAAAI x10011xx Smem = TRN1

11100110 AAAAAAAI KKKKKKKK Smem = K8

11100111 AAAAAAAI SSss00xx Smem = LO(ACx << Tx)

11100111 AAAAAAAI SSss10x% Smem = HI(rnd(ACx << Tx))

11100111 AAAAAAAI SSss11u% Smem = HI(saturate(uns(rnd(ACx << Tx))))

11101000 AAAAAAAI SSxxx0x% Smem = HI(rnd(ACx))

11101000 AAAAAAAI SSxxx1u% Smem = HI(saturate(uns(rnd(ACx))))

11101001 AAAAAAAI SSSHIFTW Smem = LO(ACx << #SHIFTW)

11101010 AAAAAAAI SSSHIFTW Smem = HI(ACx << #SHIFTW)

11101011 AAAAAAAI xxxx01xx dbl(Lmem) = RETA

11101011 AAAAAAAI xxSS10x0 dbl(Lmem) = ACx

11101011 AAAAAAAI xxSS10u1 dbl(Lmem) = saturate(uns(ACx))

11101011 AAAAAAAI FSSS1100 Lmem = pair(TAx)

11101011 AAAAAAAI xxSS1101 HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

11101011 AAAAAAAI xxSS1110 Lmem = pair(HI(ACx))

Instruction Set Opcodes

6-15Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11101011 AAAAAAAI xxSS1111 Lmem = pair(LO(ACx))

11101100 AAAAAAAI FSSS000x bit(src, Baddr) = #1

11101100 AAAAAAAI FSSS001x bit(src, Baddr) = #0

11101100 AAAAAAAI FSSS010x bit(src, pair(Baddr))

11101100 AAAAAAAI FSSS011x cbit(src, Baddr)

11101100 AAAAAAAI FSSS100t TCx = bit(src, Baddr)

11101100 AAAAAAAI XDDD1110 XAdst = mar(Smem)

11101101 AAAAAAAI 00DD1010 pair(HI(ACx)) = Lmem

11101101 AAAAAAAI 00DD1100 pair(LO(ACx)) = Lmem

11101101 AAAAAAAI 00SS1110 Lmem = pair(HI(ACx))

11101101 AAAAAAAI 00SS1111 Lmem = pair(LO(ACx))

11101101 AAAAAAAI SSDD000n ACy = ACx + dbl(Lmem)

11101101 AAAAAAAI SSDD001n ACy = ACx − dbl(Lmem)

11101101 AAAAAAAI SSDD010x ACy = dbl(Lmem) − ACx

11101101 AAAAAAAI xxxx011x RETA = dbl(Lmem)

11101101 AAAAAAAI xxDD100g ACx = M40(dbl(Lmem))

11101101 AAAAAAAI xxDD101x pair(HI(ACx)) = Lmem

11101101 AAAAAAAI xxDD110x pair(LO(ACx)) = Lmem

11101101 AAAAAAAI FDDD111x pair(TAx) = Lmem

11101101 AAAAAAAI XDDD1111 XAdst = dbl(Lmem)

11101101 AAAAAAAI XSSS0101 dbl(Lmem) = XAsrc

11101110 AAAAAAAI SSDD000x HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

11101110 AAAAAAAI SSDD001x HI(ACy) = HI(ACx) − HI(Lmem),
LO(ACy) = LO(ACx) − LO(Lmem)

11101110 AAAAAAAI SSDD010x HI(ACy) = HI(Lmem) − HI(ACx),
LO(ACy) = LO(Lmem) − LO(ACx)

11101110 AAAAAAAI ssDD011x HI(ACx) = Tx − HI(Lmem),
LO(ACx) = Tx − LO(Lmem)

11101110 AAAAAAAI ssDD100x HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

11101110 AAAAAAAI ssDD101x HI(ACx) = HI(Lmem) − Tx,
LO(ACx) = LO(Lmem) − Tx

11101110 AAAAAAAI ssDD110x HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) − Tx

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-16 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11101110 AAAAAAAI ssDD111x HI(ACx) = HI(Lmem) − Tx,
LO(ACx) = LO(Lmem) + Tx

11101111 AAAAAAAI xxxx00mm Smem = coef(Cmem)

11101111 AAAAAAAI xxxx01mm coef(Cmem) = Smem

11101111 AAAAAAAI xxxx10mm Lmem = dbl(coef(Cmem))

11101111 AAAAAAAI xxxx11mm dbl(coef(Cmem)) = Lmem

11110000 AAAAAAAI KKKKKKKK KKKKKKKK TC1 = (Smem == K16)

11110001 AAAAAAAI KKKKKKKK KKKKKKKK TC2 = (Smem == K16)

11110010 AAAAAAAI kkkkkkkk kkkkkkkk TC1 = Smem & k16

11110011 AAAAAAAI kkkkkkkk kkkkkkkk TC2 = Smem & k16

11110100 AAAAAAAI kkkkkkkk kkkkkkkk Smem = Smem & k16

11110101 AAAAAAAI kkkkkkkk kkkkkkkk Smem = Smem | k16

11110110 AAAAAAAI kkkkkkkk kkkkkkkk Smem = Smem ^ k16

11110111 AAAAAAAI KKKKKKKK KKKKKKKK Smem = Smem + K16

11111000 AAAAAAAI KKKKKKKK xxDDx0U% ACx = rnd(Smem * K8) [,T3 = Smem]

11111000 AAAAAAAI KKKKKKKK SSDDx1U% ACy = rnd(ACx + (Smem * K8)) [,T3 = Smem]

11111001 AAAAAAAI uxSHIFTW SSDD00xx ACy = ACx + (uns(Smem) << #SHIFTW)

11111001 AAAAAAAI uxSHIFTW SSDD01xx ACy = ACx − (uns(Smem) << #SHIFTW)

11111001 AAAAAAAI uxSHIFTW xxDD10xx ACx = uns(Smem) << #SHIFTW

11111010 AAAAAAAI xxSHIFTW SSxxx0x% Smem = HI(rnd(ACx << #SHIFTW))

11111010 AAAAAAAI uxSHIFTW SSxxx1x% Smem = HI(saturate(uns(rnd(ACx << #SHIFTW))))

11111011 AAAAAAAI KKKKKKKK KKKKKKKK Smem = K16

11111100 AAAAAAAI LLLLLLLL LLLLLLLL if (ARn_mod != #0) goto L16

11111101 AAAAAAAI 000000mm DDDDuug% ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 000001mm DDDDuug% ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 000010mm DDDDuug% ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 000011mm DDDDuug% ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

Instruction Set Opcodes

6-17Instruction Opcodes in Sequential OrderSWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11111101 AAAAAAAI 000100mm DDDDuug% ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 000101mm DDDDuug% ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 000110mm DDDDuug% ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 000111mm DDDDuug% ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 001000mm DDDDuug% ACy = M40(rnd(ACy + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 001001mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 001010mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 001011mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 001100mm DDDDuug% ACy = M40(rnd(ACy − (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 010000mm DDDDuug% ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 010001mm DDDDuug% ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

Instruction Set Opcodes

Instruction Opcodes in Sequential Order6-18 SWPU068E

Table 6−1. Instruction Set Opcodes (Continued)

Opcode Algebraic syntax

11111101 AAAAAAAI 010010mm DDDDuug% ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 010011mm DDDDuug% ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 010100mm DDDDuug% ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 010101mm DDDDuug% ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 010110mm DDDDuug% ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 010111mm DDDDuug% ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 011000mm DDDDuug% ACy = M40(rnd(ACy + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 011001mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 011010mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

11111101 AAAAAAAI 011011mm DDDDuug% ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

11111101 AAAAAAAI 011100mm DDDDuug% ACy = M40(rnd(ACy − (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

Instruction Set Opcode Symbols and Abbreviations

6-19Instruction Opcodes in Sequential OrderSWPU068E

6.2 Instruction Set Opcode Symbols and Abbreviations

Table 6−2 lists the symbols and abbreviations used in the instruction set
opcode.

Table 6−2. Instruction Set Opcode Symbols and Abbreviations

Bit Field
Name

Bit Field
Value Bit Field Description

% 0 Rounding is disabled

1 Rounding is enabled

AAAA AAAI Smem addressing mode:

AAAA AAA0 @dma, direct memory address (dma) direct access

AAAA AAA1 Smem indirect memory access:

0001 0001 ABS16(#k16)

0011 0001 *(#k23)

0101 0001 *port(#k16)

0111 0001 *CDP

1001 0001 *CDP+

1011 0001 *CDP−

1101 0001 *CDP(#K16)

1111 0001 *+CDP(#K16)

PPP0 0001 *ARn

PPP0 0011 *ARn+

PPP0 0101 *ARn−

PPP0 0111 *(ARn + T0), when C54CM = 0
*(ARn + T0), when C54CM = 1

PPP0 1001 *(ARn – T0), when C54CM = 0
*(ARn – T0), when C54CM = 1

PPP0 1011 *ARn(T0), when C54CM = 0
*ARn(T0), when C54CM = 1

PPP0 1101 *ARn(#K16)

PPP0 1111 *+ARn(#K16)

PPP1 0011 *(ARn + T1), when ARMS = 0
*ARn(short(#1)), when ARMS = 1

PPP1 0101 *(ARn – T1), when ARMS = 0
*ARn(short(#2)), when ARMS = 1

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-20 SWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

PPP1 0111 *ARn(T1), when ARMS = 0
*ARn(short(#3)), when ARMS = 1

PPP1 1001 *+ARn, when ARMS = 0
*ARn(short(#4)), when ARMS = 1

PPP1 1011 *−ARn, when ARMS = 0
*ARn(short(#5)), when ARMS = 1

PPP1 1101 *(ARn + T0B), when ARMS = 0
*ARn(short(#6)), when ARMS = 1

PPP1 1111 *(ARn – T0B), when ARMS = 0
*ARn(short(#7)), when ARMS = 1

PPP encodes an auxiliary register (ARn) as for XXX and YYY.

cc Relational operators (RELOP):

00 == (equal to)

01 < (less than)

10 >= (greater than or equal to)

11 != (not equal to)

CCC CCCC Conditional field (cond) on source accumulator, auxiliary, or temporary
register; TCx; and CARRY:

000 FSSS src == 0 (source is equal to 0)

001 FSSS src != 0 (source is not equal to 0)

010 FSSS src < 0 (source is less than 0)

011 FSSS src <= 0 (source is less than or equal to 0)

100 FSSS src > 0 (source is greater than 0)

101 FSSS src >= 0 (source is greater than or equal to 0)

110 00SS overflow(ACx) (source accumulator overflow status bit (ACOVx) is tested
against 1)

110 0100 TC1 (status bit is tested against 1)

110 0101 TC2 (status bit is tested against 1)

110 0110 CARRY (status bit is tested against 1)

110 0111 Reserved

Instruction Set Opcode Symbols and Abbreviations

6-21Instruction Opcodes in Sequential OrderSWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

110 1000 TC1 & TC2

110 1001 TC1 & !TC2

110 1010 !TC1 & TC2

110 1011 !TC1 & !TC2

110 11xx Reserved

111 00SS !overflow(ACx)(source accumulator overflow status bit (ACOVx) is tested
against 0)

111 0100 !TC1 (status bit is tested against 0)

111 0101 !TC2 (status bit is tested against 0)

111 0110 !CARRY (status bit is tested against 0)

111 0111 Reserved

111 1000 TC1 | TC2

111 1001 TC1 | !TC2

111 1010 !TC1 | TC2

111 1011 !TC1 | !TC2

111 1100 TC1 ^ TC2

111 1101 TC1 ^ !TC2

111 1110 !TC1 ^ TC2

111 1111 !TC1 ^ !TC2

dd Destination temporary register (Tx, Ty):

00 Temporary register 0 (T0)

01 Temporary register 1 (T1)

10 Temporary register 2 (T2)

11 Temporary register 3 (T3)

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-22 SWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

DD Destination accumulator register (ACw, ACx, ACy, ACz):

00 Accumulator 0 (AC0)

01 Accumulator 1 (AC1)

10 Accumulator 2 (AC2)

11 Accumulator 3 (AC3)

DDD . . . D Data address label coded on n bits (absolute address)

E 0 Parallel Enable bit is cleared to 0

1 Parallel Enable bit is set to 1

FDDD
FSSS

Destination or Source accumulator, auxiliary, or temporary register (dst, src,
TAx, TAy):

0000 Accumulator 0 (AC0)

0001 Accumulator 1 (AC1)

0010 Accumulator 2 (AC2)

0011 Accumulator 3 (AC3)

0100 Temporary register 0 (T0)

0101 Temporary register 1 (T1)

0110 Temporary register 2 (T2)

0111 Temporary register 3 (T3)

1000 Auxiliary register 0 (AR0)

1001 Auxiliary register 1 (AR1)

1010 Auxiliary register 2 (AR2)

1011 Auxiliary register 3 (AR3)

1100 Auxiliary register 4 (AR4)

1101 Auxiliary register 5 (AR5)

1110 Auxiliary register 6 (AR6)

1111 Auxiliary register 7 (AR7)

Instruction Set Opcode Symbols and Abbreviations

6-23Instruction Opcodes in Sequential OrderSWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

g 0 40 keyword is not applied

1 40 keyword is applied; M40 is locally set to 1

kk kkkk Swap code for Swap Register Content instruction:

00 0000 swap(AC0, AC2)

00 0001 swap(AC1, AC3)

00 0100 swap(T0, T2)

00 0101 swap(T1, T3)

00 1000 swap(AR0, AR2)

00 1001 swap(AR1, AR3)

00 1100 swap(AR4, T0)

00 1101 swap(AR5, T1)

00 1110 swap(AR6, T2)

00 1111 swap(AR7, T3)

01 0000 swap(pair(AC0), pair(AC2))

01 0001 Reserved

01 0100 swap(pair(T0), pair(T2))

01 0101 Reserved

01 1000 swap(pair(AR0), pair(AR2))

01 1001 Reserved

01 1100 swap(pair(AR4), pair(T0))

01 1101 Reserved

01 1110 swap(pair(AR6), pair(T2))

01 1111 Reserved

10 1000 Reserved

10 1100 swap(block(AR4), block(T0))

11 1000 swap(AR0, AR1)

11 1100 Reserved

1x 0000 Reserved

1x 0001 Reserved

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-24 SWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

1x 0100 Reserved

1x 0101 Reserved

1x 1001 Reserved

1x 1101 Reserved

1x 1110 Reserved

1x 1111 Reserved

kkk . . . k Unsigned constant of n bits

KKK . . . K Signed constant of n bits

lll . . . l Program address label coded on n bits
(unsigned offset relative to program counter register)

LLL . . . L Program address label coded on n bits
(signed offset relative to program counter register)

mm coef(Cmem)icient addressing mode (Cmem):

00 *CDP

01 *CDP+

10 *CDP−

11 *(CDP + T0)

MMM Modifier option for Xmem or Ymem addressing mode:

000 *ARn

001 *ARn+

010 *ARn−

011 *(ARn + T0), when C54CM = 0
*(ARn + AR0), when C54CM = 1

100 *(ARn + T1)

Instruction Set Opcode Symbols and Abbreviations

6-25Instruction Opcodes in Sequential OrderSWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

101 *(ARn – T0), when C54CM = 0
*(ARn – AR0), when C54CM = 1

110 *(ARn – T1)

111 *ARn(T0), when C54CM = 0
*ARn(AR0), when C54CM = 1

n Reserved bit

PPP . . . P Program or data address label coded on n bits (absolute address)

r 0 Select TRN0

1 Select TRN1

SHFT 4-bit immediate shift value, 0 to 15

SHIFTW 6-bit immediate shift value, −32 to +31

ss Source temporary register (Tx, Ty):

00 Temporary register 0 (T0)

01 Temporary register 1 (T1)

10 Temporary register 2 (T2)

11 Temporary register 3 (T3)

SS Source accumulator register (ACw, ACx, ACy, ACz):

00 Accumulator 0 (AC0)

01 Accumulator 1 (AC1)

10 Accumulator 2 (AC2)

11 Accumulator 3 (AC3)

Instruction Set Opcode Symbols and Abbreviations

Instruction Opcodes in Sequential Order6-26 SWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

tt 00 Bit 0: destination TCy bit of Compare Register Content instruction

01 Bit 1: source TCx bit of Compare Register Content instruction

10 When value = 0: TC1 is selected

11 When value = 1: TC2 is selected

u 0 uns keyword is not applied; operand is considered signed

1 uns keyword is applied; operand is considered unsigned

U 0 No update of T3 with Smem or Xmem content

1 T3 is updated with Smem or Xmem content

vv 00 Bit 0: shifted-out bit of Rotate instruction

01 Bit 1: shifted-in bit of Rotate instruction

10 When value = 0: CARRY is selected

11 When value = 1: TC2 is selected

x Reserved bit

XDDD
XSSS

Destination or Source accumulator or extended register. All 23 bits of stack
pointer (XSP), system stack pointer (XSSP), data page pointer (XDP),
coef(Cmem)icient data pointer (XCDP), and extended auxiliary register
(XARx).

0000 Accumulator 0 (AC0)

0001 Accumulator 1 (AC1)

0010 Accumulator 2 (AC2)

0011 Accumulator 3 (AC3)

0100 Stack pointer (XSP)

0101 System stack pointer (XSSP)

0110 Data page pointer (XDP)

0111 coef(Cmem)icient data pointer (XCDP)

1000 Auxiliary register 0 (XAR0)

Instruction Set Opcode Symbols and Abbreviations

6-27Instruction Opcodes in Sequential OrderSWPU068E

Table 6−2. Instruction Set Opcode Symbols and Abbreviations (Continued)

Bit Field
Name Bit Field Description

Bit Field
Value

1001 Auxiliary register 1 (XAR1)

1010 Auxiliary register 2 (XAR2)

1011 Auxiliary register 3 (XAR3)

1100 Auxiliary register 4 (XAR4)

1101 Auxiliary register 5 (XAR5)

1110 Auxiliary register 6 (XAR6)

1111 Auxiliary register 7 (XAR7)

XXX
YYY

Auxiliary register designation for Xmem or Ymem addressing mode:

000 Auxiliary register 0 (AR0)

001 Auxiliary register 1 (AR1)

010 Auxiliary register 2 (AR2)

011 Auxiliary register 3 (AR3)

100 Auxiliary register 4 (AR4)

101 Auxiliary register 5 (AR5)

110 Auxiliary register 6 (AR6)

111 Auxiliary register 7 (AR7)

Instruction Opcodes in Sequential Order6-28 SWPU068E

7-1

Cross-Reference of
Algebraic and Mnemonic Instruction Sets

This chapter provides a cross-reference between the TMS320C55x™ DSP
algebraic instruction set and the mnemonic instruction set (Table 7−1). For
more information on the mnemonic instruction set, see C55x CPU Mnemonic
Instruction Set Reference Guide, SWPU067.

Chapter 7

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-2
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets

Algebraic Syntax Mnemonic Syntax

Absolute Distance ABDST: Absolute Distance

abdst(Xmem, Ymem, ACx, ACy) ABDST Xmem, Ymem, ACx, ACy

Absolute Value ABS: Absolute Value

dst = |src| ABS [src,] dst

Addition ADD: Addition

dst = dst + src ADD [src,] dst

dst = dst + k4 ADD k4, dst

dst = src + K16 ADD K16, [src,] dst

dst = src + Smem ADD Smem, [src,] dst

ACy = ACy + (ACx << Tx) ADD ACx << Tx, ACy

ACy = ACy + (ACx << #SHIFTW) ADD ACx << #SHIFTW, ACy

ACy = ACx + (K16 << #16) ADD K16 << #16, [ACx,] ACy

ACy = ACx + (K16 << #SHFT) ADD K16 << #SHFT, [ACx,] ACy

ACy = ACx + (Smem << Tx) ADD Smem << Tx, [ACx,] ACy

ACy = ACx + (Smem << #16) ADD Smem << #16, [ACx,] ACy

ACy = ACx + uns(Smem) + CARRY ADD [uns(]Smem[)], CARRY, [ACx,] ACy

ACy = ACx + uns(Smem) ADD [uns(]Smem[)], [ACx,] ACy

ACy = ACx + (uns(Smem) << #SHIFTW) ADD [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

ACy = ACx + dbl(Lmem) ADD dbl(Lmem), [ACx,] ACy

ACx = (Xmem << #16) + (Ymem << #16) ADD Xmem, Ymem, ACx

Smem = Smem + K16 ADD K16, Smem

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-3
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Addition with Absolute Value ADDV: Addition with Absolute Value

ACy = rnd(ACy + |ACx|) ADD[R]V [ACx,] ACy

Addition with Parallel Store Accumulator Content to Memory ADD::MOV: Addition with Parallel Store Accumulator Content
to Memory

ACy = ACx + (Xmem << #16),
Ymem = HI(ACy << T2)

ADD Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

Addition or Subtraction Conditionally ADDSUBCC: Addition or Subtraction Conditionally

ACy = adsc(Smem, ACx, TCx) ADDSUBCC Smem, ACx, TCx, ACy

Addition or Subtraction Conditionally with Shift ADDSUB2CC: Addition or Subtraction Conditionally with Shift

ACy = ads2c(Smem, ACx, Tx, TC1, TC2) ADDSUB2CC Smem, ACx, Tx, TC1, TC2, ACy

Addition, Subtraction, or Move Accumulator Content
Conditionally

ADDSUBCC: Addition, Subtraction, or Move Accumulator
Content Conditionally

ACy = adsc(Smem, ACx, TC1, TC2) ADDSUBCC Smem, ACx, TC1, TC2, ACy

Bitwise AND AND: Bitwise AND

dst = dst & src AND src, dst

dst = src & k8 AND k8,src, dst

dst = src & k16 AND k16, src, dst

dst = src & Smem AND Smem, src, dst

ACy = ACy & (ACx <<< #SHIFTW) AND ACx << #SHIFTW[, ACy]

ACy = ACx & (k16 <<< #16) AND k16 << #16, [ACx,] ACy

ACy = ACx & (k16 <<< #SHFT) AND k16 << #SHFT, [ACx,] ACy

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-4
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Smem = Smem & k16 AND k16, Smem

Bitwise AND Memory with Immediate Value and Compare to
Zero

BAND: Bitwise AND Memory with Immediate Value and
Compare to Zero

TCx = Smem & k16 BAND Smem, k16, TCx

Bitwise OR OR: Bitwise OR

dst = dst | src OR src, dst

dst = src | k8 OR k8, src, dst

dst = src | k16 OR k16, src, dst

dst = src | Smem OR Smem, src, dst

ACy = ACy | (ACx <<< #SHIFTW) OR ACx << #SHIFTW[, ACy]

ACy = ACx | (k16 <<< #16) OR k16 << #16, [ACx,] ACy

ACy = ACx | (k16 <<< #SHFT) OR k16 << #SHFT, [ACx,] ACy

Smem = Smem | k16 OR k16, Smem

Bitwise Exclusive OR (XOR) XOR: Bitwise Exclusive OR (XOR)

dst = dst ^ src XOR src, dst

dst = src ^ k8 XOR k8, src, dst

dst = src ^ k16 XOR k16, src, dst

dst = src ^ Smem XOR Smem, src, dst

ACy = ACy ^ (ACx <<< #SHIFTW) XOR ACx << #SHIFTW[, ACy]

ACy = ACx ^ (k16 <<< #16) XOR k16 << #16, [ACx,] ACy

ACy = ACx ^ (k16 <<< #SHFT) XOR k16 << #SHFT, [ACx,] ACy

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-5
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Smem = Smem ^ k16 XOR k16, Smem

Branch Conditionally BCC: Branch Conditionally

if (cond) goto l4 BCC l4, cond

if (cond) goto L8 BCC L8, cond

if (cond) goto L16 BCC L16, cond

if (cond) goto P24 BCC P24, cond

Branch Unconditionally B: Branch Unconditionally

goto ACx B ACx

goto L7 B L7

goto L16 B L16

goto P24 B P24

Branch on Auxiliary Register Not Zero BCC: Branch on Auxiliary Register Not Zero

if (ARn_mod != #0) goto L16 BCC L16, ARn_mod != #0

Call Conditionally CALLCC: Call Conditionally

if (cond) call L16 CALLCC L16, cond

if (cond) call P24 CALLCC P24, cond

Call Unconditionally CALL: Call Unconditionally

call ACx CALL ACx

call L16 CALL L16

call P24 CALL P24

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-6
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Circular Addressing Qualifier .CR: Circular Addressing Qualifier

circular() <instruction>.CR

Clear Accumulator, Auxiliary, or Temporary Register Bit BCLR: Clear Accumulator, Auxiliary, or Temporary Register Bit

bit(src, Baddr) = #0 BCLR Baddr, src

Clear Memory Bit BCLR: Clear Memory Bit

bit(Smem, src) = #0 BCLR src, Smem

Clear Status Register Bit BCLR: Clear Status Register Bit

bit(STx, k4) = #0 BCLR k4, STx_55

BCLR f−name

Compare Accumulator, Auxiliary, or Temporary Register
Content

CMP: Compare Accumulator, Auxiliary, or Temporary Register
Content

TCx = uns(src RELOP dst) CMP[U] src RELOP dst, TCx

Compare Accumulator, Auxiliary, or Temporary Register
Content with AND

CMPAND: Compare Accumulator, Auxiliary, or Temporary
Register Content with AND

TCx = TCy & uns(src RELOP dst) CMPAND[U] src RELOP dst, TCy, TCx

TCx = !TCy & uns(src RELOP dst) CMPAND[U] src RELOP dst, !TCy, TCx

Compare Accumulator, Auxiliary, or Temporary Register
Content with OR

CMPOR: Compare Accumulator, Auxiliary, or Temporary
Register Content with OR

TCx = TCy | uns(src RELOP dst) CMPOR[U] src RELOP dst, TCy, TCx

TCx = !TCy | uns(src RELOP dst) CMPOR[U] src RELOP dst, !TCy, TCx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-7
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Compare Accumulator, Auxiliary, or Temporary Register
Content Maximum

MAX: Compare Accumulator, Auxiliary, or Temporary Register
Content Maximum

dst = max(src, dst) MAX [src,] dst

Compare Accumulator, Auxiliary, or Temporary Register
Content Minimum

MIN: Compare Accumulator, Auxiliary, or Temporary Register
Content Minimum

dst = min(src, dst) MIN [src,] dst

Compare and Branch BCC: Compare and Branch

compare (uns(src RELOP K8)) goto L8 BCC[U] L8, src RELOP K8

Compare and Select Accumulator Content Maximum MAXDIFF: Compare and Select Accumulator Content Maximum

max_diff(ACx, ACy, ACz, ACw) MAXDIFF ACx, ACy, ACz, ACw

max_diff_dbl(ACx, ACy, ACz, ACw, TRNx) DMAXDIFF ACx, ACy, ACz, ACw, TRNx

Compare and Select Accumulator Content Minimum MINDIFF: Compare and Select Accumulator Content Minimum

min_diff(ACx, ACy, ACz, ACw) MINDIFF ACx, ACy, ACz, ACw

min_diff_dbl(ACx, ACy, ACz, ACw, TRNx) DMINDIFF ACx, ACy, ACz, ACw, TRNx

Compare Memory with Immediate Value CMP: Compare Memory with Immediate Value

TCx = (Smem == K16) CMP Smem == K16, TCx

Complement Accumulator, Auxiliary, or Temporary Register Bit BNOT: Complement Accumulator, Auxiliary, or Temporary
Register Bit

cbit(src, Baddr) BNOT Baddr, src

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-8
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Complement Accumulator, Auxiliary, or Temporary Register
Content

NOT: Complement Accumulator, Auxiliary, or Temporary
Register Content

dst = ~src NOT [src,] dst

Complement Memory Bit BNOT: Complement Memory Bit

cbit(Smem, src) BNOT src, Smem

Compute Exponent of Accumulator Content EXP: Compute Exponent of Accumulator Content

Tx = exp(ACx) EXP ACx, Tx

Compute Mantissa and Exponent of Accumulator Content MANT::NEXP: Compute Mantissa and Exponent of
Accumulator Content

ACy = mant(ACx), Tx = −exp(ACx) MANT ACx, ACy
:: NEXP ACx, Tx

Count Accumulator Bits BCNT: Count Accumulator Bits

Tx = count(ACx, ACy, TCx) BCNT ACx, ACy, TCx, Tx

Dual 16-Bit Additions ADD: Dual 16-Bit Additions

HI(ACy) = HI(Lmem) + HI(ACx),
LO(ACy) = LO(Lmem) + LO(ACx)

ADD dual(Lmem), [ACx,] ACy

HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) + Tx

ADD dual(Lmem), Tx, ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-9
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Dual 16-Bit Addition and Subtraction ADDSUB: Dual 16-Bit Addition and Subtraction

HI(ACx) = Smem + Tx,
LO(ACx) = Smem – Tx

ADDSUB Tx, Smem, ACx

HI(ACx) = HI(Lmem) + Tx,
LO(ACx) = LO(Lmem) – Tx

ADDSUB Tx, dual(Lmem), ACx

Dual 16-Bit Subtractions SUB: Dual 16-Bit Subtractions

HI(ACy) = HI(ACx) – HI(Lmem),
LO(ACy) = LO(ACx) – LO(Lmem)

SUB dual(Lmem), [ACx,] ACy

HI(ACy) = HI(Lmem) – HI(ACx),
LO(ACy) = LO(Lmem) – LO(ACx)

SUB ACx, dual(Lmem), ACy

HI(ACx) = Tx – HI(Lmem),
LO(ACx) = Tx – LO(Lmem)

SUB dual(Lmem), Tx, ACx

HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) – Tx

SUB Tx, dual(Lmem), ACx

Dual 16-Bit Subtraction and Addition SUBADD: Dual 16-Bit Subtraction and Addition

HI(ACx) = Smem – Tx,
LO(ACx) = Smem + Tx

SUBADD Tx, Smem, ACx

HI(ACx) = HI(Lmem) – Tx,
LO(ACx) = LO(Lmem) + Tx

SUBADD Tx, dual(Lmem), ACx

Execute Conditionally XCC: Execute Conditionally

if (cond) execute(AD_Unit) XCC [label,]cond

if (cond) execute(D_Unit) XCCPART [label,]cond

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-10
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Expand Accumulator Bit Field BFXPA: Expand Accumulator Bit Field

dst = field_expand(ACx, k16) BFXPA k16, ACx, dst

Extract Accumulator Bit Field BFXTR: Extract Accumulator Bit Field

dst = field_extract(ACx, k16) BFXTR k16, ACx, dst

Finite Impulse Response Filter, Antisymmetrical FIRSSUB: Finite Impulse Response Filter, Antisymmetrical

firsn(Xmem, Ymem, coef(Cmem), ACx, ACy) FIRSSUB Xmem, Ymem, Cmem, ACx, ACy

Finite Impulse Response Filter, Symmetrical FIRSADD: Finite Impulse Response Filter, Symmetrical

firs(Xmem, Ymem, coef(Cmem), ACx, ACy) FIRSADD Xmem, Ymem, Cmem, ACx, ACy

Idle IDLE

idle IDLE

Least Mean Square (LMS) LMS: Least Mean Square

lms(Xmem, Ymem, ACx, ACy) LMS Xmem, Ymem, ACx, ACy

lmsf(Xmem, Ymem, ACx, ACy) LMSF Xmem, Ymem, ACx, ACy

Linear Addressing Qualifier .LR: Linear Addressing Qualifier

linear() <instruction>.LR

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-11
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Load Accumulator from Memory MOV: Load Accumulator from Memory

ACx = rnd(Smem << Tx) MOV [rnd(]Smem << Tx[)], ACx

ACx = low_byte(Smem) << #SHIFTW MOV low_byte(Smem) << #SHIFTW, ACx

ACx = high_byte(Smem) << #SHIFTW MOV high_byte(Smem) << #SHIFTW, ACx

ACx = Smem << #16 MOV Smem << #16, ACx

ACx = uns(Smem) MOV [uns(]Smem[)], ACx

ACx = uns(Smem) << #SHIFTW MOV [uns(]Smem[)] << #SHIFTW, ACx

ACx = M40(dbl(Lmem)) MOV[40] dbl(Lmem), ACx

LO(ACx) = Xmem,
HI(ACx) = Ymem

MOV Xmem, Ymem, ACx

Load Accumulator from Memory with Parallel Store
Accumulator Content to Memory

MOV::MOV: Load Accumulator from Memory with Parallel
Store Accumulator Content to Memory

ACy = Xmem << #16,
Ymem = HI(ACx << T2)

MOV Xmem << #16, ACy
:: MOV HI(ACx << T2), Ymem

Load Accumulator Pair from Memory MOV: Load Accumulator Pair from Memory

pair(HI(ACx)) = Lmem MOV dbl(Lmem), pair(HI(ACx))

pair(LO(ACx)) = Lmem MOV dbl(Lmem), pair(LO(ACx))

Load Accumulator with Immediate Value MOV: Load Accumulator with Immediate Value

ACx = K16 << #16 MOV K16 << #16, ACx

ACx = K16 << #SHFT MOV K16 << #SHFT, ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-12
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Load Accumulator, Auxiliary, or Temporary Register from
Memory

MOV: Load Accumulator, Auxiliary, or Temporary Register
from Memory

dst = Smem MOV Smem, dst

dst = uns(high_byte(Smem)) MOV [uns(]high_byte(Smem)[)], dst

dst = uns(low_byte(Smem)) MOV [uns(]low_byte(Smem)[)], dst

Load Accumulator, Auxiliary, or Temporary Register with
Immediate Value

MOV: Load Accumulator, Auxiliary, or Temporary Register with
Immediate Value

dst = k4 MOV k4, dst

dst = –k4 MOV –k4, dst

dst = K16 MOV K16, dst

Load Auxiliary or Temporary Register Pair from Memory MOV: Load Auxiliary or Temporary Register Pair from Memory

pair(TAx) = Lmem MOV dbl(Lmem), pair(TAx)

Load CPU Register from Memory MOV: Load CPU Register from Memory

BK03 = Smem MOV Smem, BK03

BK47 = Smem MOV Smem, BK47

BKC = Smem MOV Smem, BKC

BSA01 = Smem MOV Smem, BSA01

BSA23 = Smem MOV Smem, BSA23

BSA45 = Smem MOV Smem, BSA45

BSA67 = Smem MOV Smem, BSA67

BSAC = Smem MOV Smem, BSAC

BRC0 = Smem MOV Smem, BRC0

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-13
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

BRC1 = Smem MOV Smem, BRC1

CDP = Smem MOV Smem, CDP

CSR = Smem MOV Smem, CSR

DP = Smem MOV Smem, DP

DPH = Smem MOV Smem, DPH

PDP = Smem MOV Smem, PDP

SP = Smem MOV Smem, SP

SSP = Smem MOV Smem, SSP

TRN0 = Smem MOV Smem, TRN0

TRN1 = Smem MOV Smem, TRN1

RETA = dbl(Lmem) MOV dbl(Lmem), RETA

Load CPU Register with Immediate Value MOV: Load CPU Register with Immediate Value

BK03 = k12 MOV k12, BK03

BK47 = k12 MOV k12, BK47

BKC = k12 MOV k12, BKC

BRC0 = k12 MOV k12, BRC0

BRC1 = k12 MOV k12, BRC1

CSR = k12 MOV k12, CSR

DPH = k7 MOV k7, DPH

PDP = k9 MOV k9, PDP

BSA01 = k16 MOV k16, BSA01

BSA23 = k16 MOV k16, BSA23

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-14
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

BSA45 = k16 MOV k16, BSA45

BSA67 = k16 MOV k16, BSA67

BSAC = k16 MOV k16, BSAC

CDP = k16 MOV k16, CDP

DP = k16 MOV k16, DP

SP = k16 MOV k16, SP

SSP = k16 MOV k16, SSP

Load Extended Auxiliary Register from Memory MOV: Load Extended Auxiliary Register from Memory

XAdst = dbl(Lmem) MOV dbl(Lmem), XAdst

Load Extended Auxiliary Register with Immediate Value AMOV: Load Extended Auxiliary Register with Immediate Value

XAdst = k23 AMOV k23, XAdst

Load Memory with Immediate Value MOV: Load Memory with Immediate Value

Smem = K8 MOV K8, Smem

Smem = K16 MOV K16, Smem

Lock Access Qualifier .LK: Lock Access Qualifier

lock() .LK

Memory Delay DELAY: Memory Delay

delay(Smem) DELAY Smem

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-15
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Memory-Mapped Register Access Qualifier mmap: Memory-Mapped Register Access Qualifier

mmap() mmap

Modify Auxiliary Register Content AMAR: Modify Auxiliary Register Content

mar(Smem) AMAR Smem

Modify Auxiliary Register Content with Parallel Multiply AMAR::MPY: Modify Auxiliary Register Content with Parallel
Multiply

mar(Xmem),
ACx = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

AMAR Xmem
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

Modify Auxiliary Register Content with Parallel Multiply and
Accumulate

AMAR::MAC: Modify Auxiliary Register Content with Parallel
Multiply and Accumulate

mar(Xmem),
ACx = M40(rnd(ACx + (uns(Ymem) * uns(coef(Cmem)))))

AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

mar(Xmem),
ACx = M40(rnd((ACx >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

AMAR Xmem
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx >> #16

Modify Auxiliary Register Content with Parallel Multiply and
Subtract

AMAR::MAS: Modify Auxiliary Register Content with Parallel
Multiply and Subtract

mar(Xmem),
ACx = M40(rnd(ACx – (uns(Ymem) * uns(coef(Cmem)))))

AMAR Xmem
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACx

Modify Auxiliary or Temporary Register Content AMOV: Modify Auxiliary or Temporary Register Content

mar(TAy = TAx) AMOV TAx, TAy

mar(TAx = P8) AMOV P8, TAx

mar(TAx = D16) AMOV D16, TAx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-16
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Modify Auxiliary or Temporary Register Content by Addition AADD: Modify Auxiliary or Temporary Register Content by
Addition

mar(TAy + TAx) AADD TAx, TAy

mar(TAx + P8) AADD P8, TAx

Modify Auxiliary or Temporary Register Content by Subtraction ASUB: Modify Auxiliary or Temporary Register Content by
Subtraction

mar(TAy – TAx) ASUB TAx, TAy

mar(TAx – P8) ASUB P8, TAx

Modify Data Stack Pointer AADD: Modify Data Stack Pointer (SP)

SP = SP + K8 AADD K8, SP

Modify Extended Auxiliary Register Content AMAR: Modify Extended Auxiliary Register Content

XAdst = mar(Smem) AMAR Smem, XAdst

mar(XACdst = XACsrc) for DAG_X AMOV XACsrc, XACdst for DAG_X

mar(XACdst = XACsrc) for DAG_Y AMOV XACsrc, XACdst for DAG_Y

Modify Extended Auxiliary Register Content by Addition AADD: Modify Extended Auxiliary Register Content by
Addition

mar(XACdst + XACsrc) for DAG_X AADD XACsrc, XACdst for DAG_X

mar(XACdst + XACsrc) for DAG_Y AADD XACsrc, XACdst for DAG_Y

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-17
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Modify Extended Auxiliary Register Content by Subtraction ASUB: Modify Extended Auxiliary Register Content by
Subtraction

mar(XACdst − XACsrc) for DAG_X ASUB XACsrc, XACdst for DAG_X

mar(XACdst − XACsrc) for DAG_Y ASUB XACsrc, XACdst for DAG_Y

Move Accumulator Content to Auxiliary or Temporary Register MOV: Move Accumulator Content to Auxiliary or Temporary
Register

TAx = HI(ACx) MOV HI(ACx), TAx

Move Accumulator, Auxiliary, or Temporary Register Content MOV: Move Accumulator, Auxiliary, or Temporary Register
Content

dst = src MOV src, dst

Move Auxiliary or Temporary Register Content to Accumulator MOV: Move Auxiliary or Temporary Register Content to
Accumulator

HI(ACx) = TAx MOV TAx, HI(ACx)

Move Auxiliary or Temporary Register Content to CPU Register MOV: Move Auxiliary or Temporary Register Content to
CPU Register

BRC0 = TAx MOV TAx, BRC0

BRC1 = TAx MOV TAx, BRC1

CDP = TAx MOV TAx, CDP

CSR = TAx MOV TAx, CSR

SP = TAx MOV TAx, SP

SSP = TAx MOV TAx, SSP

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-18
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Move CPU Register Content to Auxiliary or Temporary Register MOV: Move CPU Register Content to Auxiliary or Temporary
Register

TAx = BRC0 MOV BRC0, TAx

TAx = BRC1 MOV BRC1, TAx

TAx = CDP MOV CDP, TAx

TAx = RPTC MOV RPTC, TAx

TAx = SP MOV SP, TAx

TAx = SSP MOV SSP, TAx

Move Extended Auxiliary Register Content MOV: Move Extended Auxiliary Register Content

xdst = xsrc MOV xsrc, xdst

Move Memory to Memory MOV: Move Memory to Memory

Smem = coef(Cmem) MOV Cmem, Smem

coef(Cmem) = Smem MOV Smem, Cmem

Lmem = dbl(coef(Cmem)) MOV Cmem, dbl(Lmem)

dbl(coef(Cmem)) = Lmem MOV dbl(Lmem), Cmem

dbl(Ymem) = dbl(Xmem) MOV dbl(Xmem), dbl(Ymem)

Ymem = Xmem MOV Xmem, Ymem

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-19
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Multiply MPY: Multiply

ACy = rnd(ACy * ACx) MPY[R] [ACx,] ACy

ACy = rnd(ACx * Tx) MPY[R] Tx, [ACx,] ACy

ACy = rnd(ACx * K8) MPYK[R] K8, [ACx,] ACy

ACy = rnd(ACx * K16) MPYK[R] K16, [ACx,] ACy

ACx = rnd(Smem * uns(coef(Cmem))) MPY[R] Smem, uns(Cmem), ACx

ACx = rnd(Smem * coef(Cmem))[, T3 = Smem] MPYM[R] [T3 =]Smem, Cmem, ACx

ACy = rnd(Smem * ACx)[, T3 = Smem] MPYM[R] [T3 =]Smem, [ACx,] ACy

ACx = rnd(Smem * K8)[, T3 = Smem] MPYMK[R] [T3 =]Smem, K8, ACx

ACx = M40(rnd(uns(Xmem) * uns(Ymem)))[, T3 = Xmem] MPYM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx

ACx = rnd(uns(Tx * Smem))[, T3 = Smem] MPYM[R][U] [T3 =]Smem, Tx, ACx

Multiply with Parallel Multiply and Accumulate MPY::MAC: Multiply with Parallel Multiply and Accumulate

ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

MPY[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MPY[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

MPY[R][40] [uns(]Ymem[)], [uns(]HI(Cmem)[)], ACy,
:: MAC[R][40] [uns(]Xmem[)], [uns(]LO(Cmem)[)], ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-20
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Multiply with Parallel Multiply and Subtract MPY::MAS: Multiply with Parallel Multiply and Subtract

ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

MPY[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MPY[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) * uns(LO(coef(Cmem)))))

MPY[R][40] [uns(]Ymem[)], [uns(]HI(Cmem)[)], ACy,
:: MAS[R][40] [uns(]Xmem[)], [uns(]LO(Cmem)[)], ACx

Multiply with Parallel Store Accumulator Content to Memory MPYM::MOV: Multiply with Parallel Store Accumulator Content
to Memory

ACy = rnd(Tx * Xmem),
Ymem = HI(ACx << T2) [,T3 = Xmem]

MPYM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

Multiply and Accumulate (MAC) MAC: Multiply and Accumulate

ACy = rnd(ACy + (ACx * Tx)) MAC[R] ACx, Tx, ACy[, ACy]

ACy = rnd((ACy * Tx) + ACx) MAC[R] ACy, Tx, ACx, ACy

ACx = rnd(ACx + (Smem * uns(coef(Cmem)))) MAC[R] Smem, uns(Cmem), ACx

ACy = rnd(ACx + (Tx * K8)) MACK[R] Tx, K8, [ACx,] ACy

ACy = rnd(ACx + (Tx * K16)) MACK[R] Tx, K16, [ACx,] ACy

ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem] MACM[R] [T3 =]Smem, Cmem, ACx

ACy = rnd(ACy + (Smem * ACx))[, T3 = Smem] MACM[R] [T3 =]Smem, [ACx,] ACy

ACy = rnd(ACx + (Tx * Smem))[, T3 = Smem] MACM[R] [T3 =]Smem, Tx, [ACx,] ACy

ACy = rnd(ACx + (Smem * K8))[, T3 = Smem] MACMK[R] [T3 =]Smem, K8, [ACx,] ACy

ACy = M40(rnd(ACx + (uns(Xmem) * uns(Ymem))))[, T3 = Xmem] MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy

ACy = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(Ymem))))
[, T3 = Xmem]

MACM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], ACx >> #16
[, ACy]

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-21
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Multiply and Accumulate with Parallel Delay MACMZ: Multiply and Accumulate with Parallel Delay

ACx = rnd(ACx + (Smem * coef(Cmem)))[, T3 = Smem],
delay(Smem)

MACM[R]Z [T3 =]Smem, Cmem, ACx

Multiply and Accumulate with Parallel Load Accumulator from
Memory

MACM::MOV: Multiply and Accumulate with Parallel Load
Accumulator from Memory

ACx = rnd(ACx + (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

MACM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

Multiply and Accumulate with Parallel Multiply MAC::MPY: Multiply and Accumulate with Parallel Multiply

ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MPY[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MPY[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]HI(Ymem)[)], [uns(]HI(Cmem)[)], ACy >> #16,
:: MPY[R][40] [uns(]LO(Xmem)[)], [uns(]LO(Cmem)[)], ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-22
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Multiply and Accumulate with Parallel Multiply and Subtract MAC::MAS: Multiply and Accumulate with Parallel Multiply
and Subtract

ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MAS[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MAS[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy + uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx − uns(Xmem) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]Ymem[)], [uns(]HI(Cmem)[)], ACy,
:: MAS[R][40] [uns(]Xmem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Ymem)[)], [uns(]HI(Cmem)[)], ACy >> #16,
:: MAS[R][40] [uns(]LO(Xmem)[)], [uns(]LO(Cmem)[)], ACx

Multiply and Accumulate with Parallel Store Accumulator
Content to Memory

MACM::MOV: Multiply and Accumulate with Parallel Store
Accumulator Content to Memory

ACy = rnd(ACy + (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

MACM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

Multiply and Subtract MAS: Multiply and Subtract

ACy = rnd(ACy – (ACx * Tx)) MAS[R] Tx, [ACx,] ACy

ACx = rnd(ACx − (Smem * uns(coef(Cmem)))) MAS[R] Smem, uns(Cmem), ACx

ACx = rnd(ACx – (Smem * coef(Cmem)))[, T3 = Smem] MASM[R] [T3 =]Smem, Cmem, ACx

ACy = rnd(ACy – (Smem * ACx))[, T3 = Smem] MASM[R] [T3 =]Smem, [ACx,] ACy

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-23
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

ACy = rnd(ACx – (Tx * Smem))[, T3 = Smem] MASM[R] [T3 =]Smem, Tx, [ACx,] ACy

ACy = M40(rnd(ACx – (uns(Xmem) * uns(Ymem))))[, T3 = Xmem] MASM[R][40] [T3 =][uns(]Xmem[)], [uns(]Ymem[)], [ACx,] ACy

Multiply and Subtract with Parallel Load Accumulator from
Memory

MASM::MOV: Multiply and Subtract with Parallel Load
Accumulator from Memory

ACx = rnd(ACx – (Tx * Xmem)),
ACy = Ymem << #16 [,T3 = Xmem]

MASM[R] [T3 =]Xmem, Tx, ACx
:: MOV Ymem << #16, ACy

Multiply and Subtract with Parallel Multiply MAS::MPY: Multiply and Subtract with Parallel Multiply

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

MAS[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

MAS[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

Multiply and Subtract with Parallel Multiply and Accumulate MAS::MAC: Multiply and Subtract with Parallel Multiply and
Accumulate

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

MAS[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MAS[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-24
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Multiply and Subtract with Parallel Store Accumulator Content
to Memory

MASM::MOV: Multiply and Subtract with Parallel Store
Accumulator Content to Memory

ACy = rnd(ACy – (Tx * Xmem)),
Ymem = HI(ACx << T2) [,T3 = Xmem]

MASM[R] [T3 =]Xmem, Tx, ACy
:: MOV HI(ACx << T2), Ymem

Negate Accumulator, Auxiliary, or Temporary Register Content NEG: Negate Accumulator, Auxiliary, or Temporary Register
Content

dst = –src NEG [src,] dst

No Operation NOP: No Operation

nop NOP

nop_16 NOP_16

Parallel Modify Auxiliary Register Contents AMAR: Parallel Modify Auxiliary Register Contents

mar(Xmem), mar(Ymem), mar(coef(Cmem)) AMAR Xmem, Ymem, Cmem

Parallel Multiplies MPY::MPY: Parallel Multiplies

ACx = M40(rnd(uns(Xmem) * uns(coef(Cmem)))),
ACy = M40(rnd(uns(Ymem) * uns(coef(Cmem))))

MPY[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MPY[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACy = M40(rnd(uns(Smem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Smem) * uns(LO(coef(Cmem)))))

MPY[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(HI(Lmem)) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(LO(Lmem)) * uns(LO(coef(Cmem)))))

MPY[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MPY[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(uns(Xmem) * uns(LO(coef(Cmem)))))

MPY[R][40] [uns(]Ymem[)], [uns(]HI(Cmem)[)], ACy,
:: MPY[R][40] [uns(]Xmem[)], [uns(]LO(Cmem)[)], ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-25
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Parallel Multiply and Accumulates MAC::MAC: Parallel Multiply and Accumulates

ACx = M40(rnd(ACx + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M4(rnd(ACy + (uns(Ymem) * uns(coef(Cmem)))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACx = M40(rnd((ACx >> #16) + (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd((ACy >> #16) + (uns(Ymem) * uns(coef(Cmem)))))

MAC[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx >> #16
:: MAC[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy >> #16

ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(Smem) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy + (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx>>#16

ACy = M40(rnd((ACy>>#16) + (uns(Smem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(Smem) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MAC[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx>>#16

ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx + (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy + (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx>>#16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAC[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx>>#16

ACy = M40(rnd((ACy>>#16) + (uns(HI(Lmem)) *
uns(HI(coef(Cmem))))))),
ACx = M40(rnd((ACx>>#16) + (uns(LO(Lmem)) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy>>#16
:: MAC[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx>>#16

ACy = M40(rnd(ACy + uns(Ymem) * uns(HI(coef(Cmem))))),
ACx = M40(rnd(ACx + uns(Xmem) * uns(LO(coef(Cmem)))))

MAC[R][40] [uns(]Ymem[)], [uns(]HI(Cmem)[)], ACy,
:: MAC[R][40] [uns(]Xmem[)], [uns(]LO(Cmem)[)], ACx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-26
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

ACy = M40(rnd(ACy + (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Ymem)[)], [uns(]HI(Cmem)[)], ACy,
:: MAC[R][40] [uns(]LO(Xmem)[)], [uns(]LO(Cmem)[)], ACx >> #16

ACy = M40(rnd((ACy >> #16) + (uns(Ymem) *
uns(HI(coef(Cmem)))))),
ACx = M40(rnd((ACx >> #16) + (uns(Xmem) *
uns(LO(coef(Cmem))))))

MAC[R][40] [uns(]HI(Ymem)[)], [uns(]HI(Cmem)[)], ACy >> #16,
:: MAC[R][40] [uns(]LO(Xmem)[)], [uns(]LO(Cmem)[)], ACx >> #16

Parallel Multiply and Subtracts MAS::MAS: Parallel Multiply and Subtracts

ACx = M40(rnd(ACx – (uns(Xmem) * uns(coef(Cmem))))),
ACy = M40(rnd(ACy – (uns(Ymem) * uns(coef(Cmem)))))

MAS[R][40] [uns(]Xmem[)], [uns(]Cmem[)], ACx
:: MAS[R][40] [uns(]Ymem[)], [uns(]Cmem[)], ACy

ACy = M40(rnd(ACy − (uns(Smem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Smem) * uns(LO(coef(Cmem))))))

MAS[R][40] [uns(]Smem[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]Smem[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy − (uns(HI(Lmem)) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(LO(Lmem)) * uns(LO(coef(Cmem))))))

MAS[R][40] [uns(]HI(Lmem)[)], [uns(]HI(Cmem)[)], ACy
:: MAS[R][40] [uns(]LO(Lmem)[)], [uns(]LO(Cmem)[)], ACx

ACy = M40(rnd(ACy − (uns(Ymem) * uns(HI(coef(Cmem)))))),
ACx = M40(rnd(ACx − (uns(Xmem) * uns(LO(coef(Cmem))))))

MAS[R][40] [uns(]HI(Ymem)[)], [uns(]HI(Cmem)[)], ACy,
:: MAS[R][40] [uns(]LO(Xmem)[)], [uns(]LO(Cmem)[)], ACx

Peripheral Port Register Access Qualifiers port: Peripheral Port Register Access Qualifiers

readport() port(Smem)

writeport() port(Smem)

Pop Accumulator or Extended Auxiliary Register Content from
Stack Pointers

POPBOTH: Pop Accumulator or Extended Auxiliary Register
Content from Stack Pointers

xdst = popboth() POPBOTH xdst

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-27
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Pop Top of Stack POP: Pop Top of Stack

dst1, dst2 = pop() POP dst1, dst2

dst = pop() POP dst

dst, Smem = pop() POP dst, Smem

ACx = dbl(pop()) POP ACx

Smem = pop() POP Smem

dbl(Lmem) = pop() POP dbl(Lmem)

Push Accumulator or Extended Auxiliary Register Content to
Stack Pointers

PSHBOTH: Push Accumulator or Extended Auxiliary Register
Content to Stack Pointers

pshboth(xsrc) PSHBOTH xsrc

Push to Top of Stack PSH: Push to Top of Stack

push(src1, src2) PSH src1, src2

push(src) PSH src

push(src, Smem) PSH src, Smem

dbl(push(ACx)) PSH ACx

push(Smem) PSH Smem

push(dbl(Lmem)) PSH dbl(Lmem)

Repeat Block of Instructions Unconditionally RPTB: Repeat Block of Instructions Unconditionally

localrepeat{ } RPTBLOCAL pmad

blockrepeat{ } RPTB pmad

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-28
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Repeat Single Instruction Conditionally RPTCC: Repeat Single Instruction Conditionally

while (cond && (RPTC < k8)) repeat RPTCC k8, cond

Repeat Single Instruction Unconditionally RPT: Repeat Single Instruction Unconditionally

repeat(k8) RPT k8

repeat(k16) RPT k16

repeat(CSR) RPT CSR

Repeat Single Instruction Unconditionally and Decrement CSR RPTSUB: Repeat Single Instruction Unconditionally and
Decrement CSR

repeat(CSR), CSR –= k4 RPTSUB CSR, k4

Repeat Single Instruction Unconditionally and Increment CSR RPTADD: Repeat Single Instruction Unconditionally and
Increment CSR

repeat(CSR), CSR += TAx RPTADD CSR, TAx

repeat(CSR), CSR += k4 RPTADD CSR, k4

Return Conditionally RETCC: Return Conditionally

if (cond) return RETCC cond

Return Unconditionally RET: Return Unconditionally

return RET

Return from Interrupt RETI: Return from Interrupt

return_int RETI

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-29
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Rotate Left Accumulator, Auxiliary, or Temporary Register
Content

ROL: Rotate Left Accumulator, Auxiliary, or Temporary
Register Content

dst = BitOut \\ src \\ BitIn ROL BitOut, src, BitIn, dst

Rotate Right Accumulator, Auxiliary, or Temporary Register
Content

ROR: Rotate Right Accumulator, Auxiliary, or Temporary
Register Content

dst = BitIn // src // BitOut ROR BitIn, src, BitOut, dst

Round Accumulator Content ROUND: Round Accumulator Content

ACy = rnd(ACx) ROUND [ACx,] ACy

Saturate Accumulator Content SAT: Saturate Accumulator Content

ACy = saturate(rnd(ACx)) SAT[R] [ACx,] ACy

Set Accumulator, Auxiliary, or Temporary Register Bit BSET: Set Accumulator, Auxiliary, or Temporary Register Bit

bit(src, Baddr) = #1 BSET Baddr, src

Set Memory Bit BSET: Set Memory Bit

bit(Smem, src) = #1 BSET src, Smem

Set Status Register Bit BSET: Set Status Register Bit

bit(STx, k4) = #1 BSET k4, STx_55

BSET f−name

Shift Accumulator Content Conditionally SFTCC: Shift Accumulator Content Conditionally

ACx = sftc(ACx, TCx) SFTCC ACx, TCx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-30
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Shift Accumulator Content Logically SFTL: Shift Accumulator Content Logically

ACy = ACx <<< Tx SFTL ACx, Tx[, ACy]

ACy = ACx <<< #SHIFTW SFTL ACx, #SHIFTW[, ACy]

Shift Accumulator, Auxiliary, or Temporary Register Content
Logically

SFTL: Shift Accumulator, Auxiliary, or Temporary Register
Content Logically

dst = dst <<< #1 SFTL dst, #1

dst = dst >>> #1 SFTL dst, #−1

Signed Shift of Accumulator Content SFTS: Signed Shift of Accumulator Content

ACy = ACx << Tx SFTS ACx, Tx[, ACy]

ACy = ACx << #SHIFTW SFTS ACx, #SHIFTW[, ACy]

ACy = ACx <<C Tx SFTSC ACx, Tx[, ACy]

ACy = ACx <<C #SHIFTW SFTSC ACx, #SHIFTW[, ACy]

Signed Shift of Accumulator, Auxiliary, or Temporary Register
Content

SFTS: Signed Shift of Accumulator, Auxiliary, or Temporary
Register Content

dst = dst >> #1 SFTS dst, #−1

dst = dst << #1 SFTS dst, #1

Software Interrupt INTR: Software Interrupt

intr(k5) INTR k5

Software Reset RESET: Software Reset

reset RESET

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-31
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Software Trap TRAP: Software Trap

trap(k5) TRAP k5

Square SQR: Square

ACy = rnd(ACx * ACx) SQR[R] [ACx,] ACy

ACx = rnd(Smem * Smem)[, T3 = Smem] SQRM[R] [T3 =]Smem, ACx

Square and Accumulate SQA: Square and Accumulate

ACy = rnd(ACy + (ACx * ACx)) SQA[R] [ACx,] ACy

ACy = rnd(ACx + (Smem * Smem))[, T3 = Smem] SQAM[R] [T3 =]Smem, [ACx,] ACy

Square and Subtract SQS: Square and Subtract

ACy = rnd(ACy – (ACx * ACx)) SQS[R] [ACx,] ACy

ACy = rnd(ACx – (Smem * Smem))[, T3 = Smem] SQSM[R] [T3 =]Smem, [ACx,] ACy

Square Distance SQDST: Square Distance

sqdst(Xmem, Ymem, ACx, ACy) SQDST Xmem, Ymem, ACx, ACy

Store Accumulator Content to Memory MOV: Store Accumulator Content to Memory

Smem = HI(ACx) MOV HI(ACx), Smem

Smem = HI(rnd(ACx)) MOV [rnd(]HI(ACx)[)], Smem

Smem = LO(ACx << Tx) MOV ACx << Tx, Smem

Smem = HI(rnd(ACx << Tx)) MOV [rnd(]HI(ACx << Tx)[)], Smem

Smem = LO(ACx << #SHIFTW) MOV ACx << #SHIFTW, Smem

Smem = HI(ACx << #SHIFTW) MOV HI(ACx << #SHIFTW), Smem

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-32
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Smem = HI(rnd(ACx << #SHIFTW)) MOV [rnd(]HI(ACx << #SHIFTW)[)], Smem

Smem = HI(saturate(uns(rnd(ACx)))) MOV [uns(] [rnd(]HI[(saturate](ACx)[)))], Smem

Smem = HI(saturate(uns(rnd(ACx << Tx)))) MOV [uns(] [rnd(]HI[(saturate](ACx << Tx)[)))], Smem

Smem = HI(saturate(uns(rnd(ACx << #SHIFTW)))) MOV [uns(] [rnd(]HI[(saturate](ACx << #SHIFTW)[)))], Smem

dbl(Lmem) = ACx MOV ACx, dbl(Lmem)

dbl(Lmem) = saturate(uns(ACx)) MOV [uns(]saturate(ACx)[)], dbl(Lmem)

HI(Lmem) = HI(ACx) >> #1,
LO(Lmem) = LO(ACx) >> #1

MOV ACx >> #1, dual(Lmem)

Xmem = LO(ACx),
Ymem = HI(ACx)

MOV ACx, Xmem, Ymem

Store Accumulator Pair Content to Memory MOV: Store Accumulator Pair Content to Memory

Lmem = pair(HI(ACx)) MOV pair(HI(ACx)), dbl(Lmem)

Lmem = pair(LO(ACx)) MOV pair(LO(ACx)), dbl(Lmem)

Store Accumulator, Auxiliary, or Temporary Register Content
to Memory

MOV: Store Accumulator, Auxiliary, or Temporary Register
Content to Memory

Smem = src MOV src, Smem

high_byte(Smem) = src MOV src, high_byte(Smem)

low_byte(Smem) = src MOV src, low_byte(Smem)

Store Auxiliary or Temporary Register Pair Content to Memory MOV: Store Auxiliary or Temporary Register Pair Content to
Memory

Lmem = pair(TAx) MOV pair(TAx), dbl(Lmem)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-33
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Store CPU Register Content to Memory MOV: Store CPU Register Content to Memory

Smem = BK03 MOV BK03, Smem

Smem = BK47 MOV BK47, Smem

Smem = BKC MOV BKC, Smem

Smem = BSA01 MOV BSA01, Smem

Smem = BSA23 MOV BSA23, Smem

Smem = BSA45 MOV BSA45, Smem

Smem = BSA67 MOV BSA67, Smem

Smem = BSAC MOV BSAC, Smem

Smem = BRC0 MOV BRC0, Smem

Smem = BRC1 MOV BRC1, Smem

Smem = CDP MOV CDP, Smem

Smem = CSR MOV CSR, Smem

Smem = DP MOV DP, Smem

Smem = DPH MOV DPH, Smem

Smem = PDP MOV PDP, Smem

Smem = SP MOV SP, Smem

Smem = SSP MOV SSP, Smem

Smem = TRN0 MOV TRN0, Smem

Smem = TRN1 MOV TRN1, Smem

dbl(Lmem) = RETA MOV RETA, dbl(Lmem)

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-34
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Store Extended Auxiliary Register Content to Memory MOV: Store Extended Auxiliary Register Content to Memory

dbl(Lmem) = XAsrc MOV XAsrc, dbl(Lmem)

Subtract Conditionally SUBC: Subtract Conditionally

subc(Smem, ACx, ACy) SUBC Smem, [ACx,] ACy

Subtraction SUB: Subtraction

dst = dst – src SUB [src,] dst

dst = dst – k4 SUB k4, dst

dst = src – K16 SUB K16, [src,] dst

dst = src – Smem SUB Smem, [src,] dst

dst = Smem – src SUB src, Smem, dst

ACy = ACy – (ACx << Tx) SUB ACx << Tx, ACy

ACy = ACy – (ACx << #SHIFTW) SUB ACx << #SHIFTW, ACy

ACy = ACx – (K16 << #16) SUB K16 << #16, [ACx,] ACy

ACy = ACx – (K16 << #SHFT) SUB K16 << #SHFT, [ACx,] ACy

ACy = ACx – (Smem << Tx) SUB Smem << Tx, [ACx,] ACy

ACy = ACx – (Smem << #16) SUB Smem << #16, [ACx,] ACy

ACy = (Smem << #16) – ACx SUB ACx, Smem << #16, ACy

ACy = ACx – uns(Smem) – BORROW SUB [uns(]Smem[)], BORROW, [ACx,] ACy

ACy = ACx – uns(Smem) SUB [uns(]Smem[)], [ACx,] ACy

ACy = ACx – (uns(Smem) << #SHIFTW) SUB [uns(]Smem[)] << #SHIFTW, [ACx,] ACy

ACy = ACx – dbl(Lmem) SUB dbl(Lmem), [ACx,] ACy

ACy = dbl(Lmem) – ACx SUB ACx, dbl(Lmem), ACy

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-35
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

ACx = (Xmem << #16) – (Ymem << #16) SUB Xmem, Ymem, ACx

Subtraction with Parallel Store Accumulator Content to
Memory

SUB::MOV: Subtraction with Parallel Store Accumulator
Content to Memory

ACy = (Xmem << #16) – ACx,
Ymem = HI(ACy << T2)

SUB Xmem << #16, ACx, ACy
:: MOV HI(ACy << T2), Ymem

Swap Accumulator Content SWAP: Swap Accumulator Content

swap(ACx, ACy) SWAP ACx, ACy

Swap Accumulator Pair Content SWAPP: Swap Accumulator Pair Content

swap(pair(AC0), pair(AC2)) SWAPP AC0, AC2

Swap Auxiliary Register Content SWAP: Swap Auxiliary Register Content

swap(ARx, ARy) SWAP ARx, ARy

Swap Auxiliary Register Pair Content SWAPP: Swap Auxiliary Register Pair Content

swap(pair(AR0), pair(AR2)) SWAPP AR0, AR2

Swap Auxiliary and Temporary Register Content SWAP: Swap Auxiliary and Temporary Register Content

swap(ARx, Tx) SWAP ARx, Tx

Swap Auxiliary and Temporary Register Pair Content SWAPP: Swap Auxiliary and Temporary Register Pair Content

swap(pair(ARx), pair(Tx)) SWAPP ARx, Tx

Swap Auxiliary and Temporary Register Pairs Content SWAP4: Swap Auxiliary and Temporary Register Pairs Content

swap(block(AR4), block(T0)) SWAP4 AR4, T0

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-36
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Swap Temporary Register Content SWAP: Swap Temporary Register Content

swap(Tx, Ty) SWAP Tx, Ty

Swap Temporary Register Pair Content SWAPP: Swap Temporary Register Pair Content

swap(pair(T0), pair(T2)) SWAPP T0, T2

Test Accumulator, Auxiliary, or Temporary Register Bit BTST: Test Accumulator, Auxiliary, or Temporary Register Bit

TCx = bit(src, Baddr) BTST Baddr, src, TCx

Test Accumulator, Auxiliary, or Temporary Register Bit Pair BTSTP: Test Accumulator, Auxiliary, or Temporary Register Bit
Pair

bit(src, pair(Baddr)) BTSTP Baddr, src

Test Memory Bit BTST: Test Memory Bit

TCx = bit(Smem, src) BTST src, Smem, TCx

TCx = bit(Smem, k4) BTST k4, Smem, TCx

Test and Clear Memory Bit BTSTCLR: Test and Clear Memory Bit

TCx = bit(Smem, k4),
bit(Smem, k4) = #0

BTSTCLR k4, Smem, TCx

Test and Complement Memory Bit BTSTNOT: Test and Complement Memory Bit

TCx = bit(Smem, k4),
cbit(Smem, k4)

BTSTNOT k4, Smem, TCx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-37
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Table 7−1. Cross-Reference of Algebraic and Mnemonic Instruction Sets (Continued)

Algebraic Syntax Mnemonic Syntax

Test and Set Memory Bit BTSTSET: Test and Set Memory Bit

TCx = bit(Smem, k4),
bit(Smem, k4) = #1

BTSTSET k4, Smem, TCx

C
ross-R

eference of A
lgebraic and M

nem
onic Instruction S

ets

7-38
C

ross-R
eference of A

lgebraic and M
nem

onic Instruction S
ets

S
W

P
U

068E

Index

Index-1

Index

A
abdst 5-2
absolute addressing modes 3-3

I/O absolute 3-3
k16 absolute 3-3
k23 absolute 3-3

Absolute Distance (abdst) 5-2
Absolute Value 5-4
Addition 5-7
Addition or Subtraction Conditionally (adsc) 5-31
Addition or Subtraction Conditionally with Shift

(ads2c) 5-33
Addition with Absolute Value 5-27
Addition with Parallel Store Accumulator Content to

Memory 5-29
Addition, Subtraction, or Move Accumulator Content

Conditionally (adsc) 5-36
addressing modes

absolute 3-3
direct 3-4
indirect 3-6
introduction 3-2

ads2c 5-33
adsc 5-31, 5-36
affect of status bits 1-9
algebraic instruction set cross-reference to

mnemonic instruction set 7-1
AND 5-38
Antisymmetrical Finite Impulse Response Filter

(firsn) 5-168
arithmetic

absolute distance 5-2
absolute value 5-4
addition 5-7
addition or subtraction conditionally 5-31, 5-36

addition or subtraction conditionally with
shift 5-33

addition with absolute value 5-27
compare memory with immediate value 5-126
compute exponent of accumulator

content 5-131
compute mantissa and exponent of accumulator

content 5-132
dual 16-bit addition and subtraction 5-140
dual 16-bit additions 5-135
dual 16-bit subtraction and addition 5-154
dual 16-bit subtractions 5-145
finite impulse response filter,

antisymmetrical 5-168
finite impulse response filter, symmetrical 5-170
least mean square 5-173, 5-175
multiply 5-269
multiply and accumulate 5-308
multiply and subtract 5-369
negation 5-403
round accumulator content 5-518
saturate accumulator content 5-520
square 5-557
square and accumulate 5-560
square and subtract 5-563
square distance 5-566
subtract conditionally 5-601
subtraction 5-603

B
bit field comparison 5-47

bit field counting 5-134

bit field expand 5-166
bit field extract 5-167

bit manipulation
bitwise AND memory with immediate value and

compare to zero 5-47

Index

Index-2

clear accumulator, auxiliary, or temporary register
bit 5-88

clear memory bit 5-89
clear status register bit 5-90
complement accumulator, auxiliary, or temporary

register bit 5-128
complement accumulator, auxiliary, or temporary

register content 5-129
complement memory bit 5-130
expand accumulator bit field 5-166
extract accumulator bit field 5-167
set accumulator, auxiliary, or temporary register

bit 5-522
set memory bit 5-523
set status register bit 5-524
test accumulator, auxiliary, or temporary register

bit 5-641
test accumulator, auxiliary, or temporary register

bit pair 5-643
test and clear memory bit 5-648
test and complement memory bit 5-649
test and set memory bit 5-650
test memory bit 5-645

Bitwise AND 5-38

Bitwise AND Memory with Immediate Value and
Compare to Zero 5-47

bitwise complement 5-129

Bitwise Exclusive OR (XOR) 5-57

Bitwise OR 5-48

blockrepeat 5-484

branch
conditionally 5-66
on auxiliary register not zero 5-74
unconditionally 5-70

Branch Conditionally (if goto) 5-66

Branch on Auxiliary Register Not Zero (if
goto) 5-74

Branch Unconditionally (goto) 5-70

C
call 5-83

conditionally 5-77
unconditionally 5-83

Call Conditionally (if call) 5-77

Call Unconditionally (call) 5-83

cbit 5-128, 5-130

circular 5-87
circular addressing 3-21
Circular Addressing Qualifier (circular) 5-87
clear

accumulator bit 5-88
auxiliary register bit 5-88
memory bit 5-89
status register bit 5-90
temporary register bit 5-88

Clear Accumulator Bit 5-88
Clear Auxiliary Register Bit 5-88
Clear Memory Bit 5-89
Clear Status Register Bit 5-90
Clear Temporary Register Bit 5-88
compare

accumulator, auxiliary, or temporary register
content 5-93

accumulator, auxiliary, or temporary register
content maximum 5-105

accumulator, auxiliary, or temporary register
content minimum 5-108

accumulator, auxiliary, or temporary register
content with AND 5-95

accumulator, auxiliary, or temporary register
content with OR 5-100

and branch 5-111
and select accumulator content maximum 5-114
and select accumulator content minimum 5-120
memory with immediate value 5-126

Compare Accumulator Content 5-93
Compare Accumulator Content Maximum

(max) 5-105
Compare Accumulator Content Minimum

(min) 5-108
Compare Accumulator Content with AND 5-95
Compare Accumulator Content with OR 5-100
Compare and Branch 5-111
compare and goto 5-111
Compare and Select Accumulator Content

Maximum (max_diff) 5-114
Compare and Select Accumulator Content Minimum

(min_diff) 5-120
Compare Auxiliary Register Content 5-93
Compare Auxiliary Register Content Maximum

(max) 5-105
Compare Auxiliary Register Content Minimum

(min) 5-108

Index

Index-3

Compare Auxiliary Register Content with
AND 5-95

Compare Auxiliary Register Content with
OR 5-100

compare maximum 5-105

Compare Memory with Immediate Value 5-126

compare minimum 5-108

Compare Temporary Register Content 5-93

Compare Temporary Register Content Maximum
(max) 5-105

Compare Temporary Register Content Minimum
(min) 5-108

Compare Temporary Register Content with
AND 5-95

Compare Temporary Register Content with
OR 5-100

complement
accumulator bit 5-128
accumulator content 5-129
auxiliary register bit 5-128
auxiliary register content 5-129
memory bit 5-130
temporary register bit 5-128
temporary register content 5-129

Complement Accumulator Bit (cbit) 5-128

Complement Accumulator Content 5-129

Complement Auxiliary Register Bit (cbit) 5-128

Complement Auxiliary Register Content 5-129

Complement Memory Bit (cbit) 5-130

Complement Temporary Register Bit (cbit) 5-128

Complement Temporary Register Content 5-129

Compute Exponent of Accumulator Content
(exp) 5-131

Compute Mantissa and Exponent of Accumulator
Content 5-132

cond field 1-7

conditional
addition or subtraction 5-31
addition or subtraction with shift 5-33
addition, subtraction, or move accumulator

content 5-36
branch 5-66
call 5-77
execute 5-159
repeat single instruction 5-495
return 5-508

shift 5-527
subtract 5-601

count 5-134
Count Accumulator Bits (count) 5-134
Cross-Reference to Algebraic and Mnemonic

Instruction Sets 7-1

D
delay 5-220
direct addressing modes 3-4

DP direct 3-4
PDP direct 3-5
register-bit direct 3-5
SP direct 3-5

Dual 16-Bit Addition and Subtraction 5-140
Dual 16-Bit Additions 5-135
dual 16-bit arithmetic

addition and subtraction 5-140
additions 5-135
subtraction and addition 5-154
subtractions 5-145

Dual 16-Bit Subtraction and Addition 5-154
Dual 16-Bit Subtractions 5-145

E
Execute Conditionally (if execute) 5-159
exp 5-131, 5-132
Expand Accumulator Bit Field

(field_expand) 5-166
extended auxiliary register (XAR)

load from memory 5-215
load with immediate value 5-216
modify content 5-246
modify content by addition 5-249
modify content by subtraction 5-251
move content 5-261
pop content from stack pointers 5-468
push content to stack pointers 5-476
store to memory 5-600

Extract Accumulator Bit Field (field_extract) 5-167

F
field_expand 5-166
field_extract 5-167

Index

Index-4

finite impulse response (FIR) filter
antisymmetrical 5-168
symmetrical 5-170

firs 5-170

firsn 5-168

G
goto 5-70

I
idle 5-172

if call 5-77

if execute 5-159

if goto 5-66, 5-74

if return 5-508

indirect addressing modes 3-6
AR indirect 3-6
CDP indirect 3-16
coefficient indirect 3-19
dual AR indirect 3-14

initialize memory 5-217

instruction qualifier
circular addressing 5-87
linear addressing 5-179
memory-mapped register access 5-221

instruction set
abbreviations 1-2
affect of status bits 1-9
conditional fields 1-7
nonrepeatable instructions 1-20
notes 1-14
opcode symbols and abbreviations 6-19
opcodes 6-2
operators 1-6
rules 1-14
symbols 1-2
terms 1-2

instruction set conditional fields 1-7

instruction set notes and rules 1-14

instruction set opcode
abbreviations 6-19
symbols 6-19

instruction set opcodes 6-2

instruction set summary 4-1

instruction set terms, symbols, and
abbreviations 1-2

interrupt 5-549
intr 5-549

L
Least Mean Square (lms) 5-173
Least Mean Square (lmsf) 5-175
linear 5-179
Linear Addressing Qualifier (linear) 5-179
List of Algebraic Instruction Opcodes 6-1
lms 5-173
lmsf 5-175
load

accumulator from memory 5-180
accumulator from memory with parallel store

accumulator content to memory 5-189
accumulator pair from memory 5-191
accumulator with immediate value 5-196
accumulator, auxiliary, or temporary register from

memory 5-199
accumulator, auxiliary, or temporary register with

immediate value 5-205
auxiliary or temporary register pair from

memory 5-209
CPU register from memory 5-210
CPU register with immediate value 5-213
extended auxiliary register (XAR) from

memory 5-215
extended auxiliary register (XAR) with immediate

value 5-216
memory with immediate value 5-217

Load Accumulator from Memory 5-180, 5-199
Load Accumulator from Memory with Parallel Store

Accumulator Content to Memory 5-189
Load Accumulator Pair from Memory 5-191
Load Accumulator with Immediate Value 5-196,

5-205
Load Auxiliary Register from Memory 5-199
Load Auxiliary Register Pair from Memory 5-209
Load Auxiliary Register with Immediate

Value 5-205
Load CPU Register from Memory 5-210
Load CPU Register with Immediate Value 5-213
Load Extended Auxiliary Register (XAR) from

Memory 5-215

Index

Index-5

Load Extended Auxiliary Register (XAR) with
Immediate Value 5-216

Load Memory with Immediate Value 5-217

Load Temporary Register from Memory 5-199

Load Temporary Register Pair from Memory 5-209

Load Temporary Register with Immediate
Value 5-205

localrepeat 5-484

lock, access qualifier 5-218

Lock Access Qualifier 5-218

logical
bitwise AND 5-38
bitwise OR 5-48
bitwise XOR 5-57
count accumulator bits 5-134
shift accumulator content logically 5-529
shift accumulator, auxiliary, or temporary register

content logically 5-532

M
mant 5-132

mar 5-222, 5-233, 5-237, 5-241, 5-246, 5-249,
5-251, 5-406

max 5-105

max_diff 5-114

max_diff_dbl 5-114

memory bit
clear 5-89
complement (not) 5-130
set 5-523
test 5-645
test and clear 5-648
test and complement 5-649
test and set 5-650

Memory Delay (delay) 5-220

Memory-Mapped Register Access Qualifier
(mmap) 5-221

min 5-108

min_diff 5-120

min_diff_dbl 5-120

mmap 5-221

mnemonic instruction set cross-reference to
algebraic instruction set 7-1

modify
auxiliary or temporary register content 5-233

auxiliary or temporary register content by
addition 5-237

auxiliary or temporary register content by
subtraction 5-241

auxiliary register content 5-222
auxiliary register content with parallel

multiply 5-224
auxiliary register content with parallel multiply

and accumulate 5-226
auxiliary register content with parallel multiply

and subtract 5-231
data stack pointer 5-245
extended auxiliary register (XAR) content 5-246
extended auxiliary register (XAR) content by

addition 5-249
extended auxiliary register (XAR) content by

subtraction 5-251

Modify Auxiliary Register Content (mar) 5-222,
5-233

Modify Auxiliary Register Content by Addition
(mar) 5-237

Modify Auxiliary Register Content by Subtraction
(mar) 5-241

Modify Auxiliary Register Content with Parallel
Multiply (mar) 5-224

Modify Auxiliary Register Content with Parallel
Multiply and Accumulate (mar) 5-226

Modify Auxiliary Register Content with Parallel
Multiply and Subtract (mar) 5-231

Modify Data Stack Pointer 5-245

Modify Extended Auxiliary Register Content
(mar) 5-246

Modify Extended Auxiliary Register Content by
Addition (mar) 5-249

Modify Extended Auxiliary Register Content by
Subtraction (mar) 5-251

Modify Temporary Register Content (mar) 5-233

Modify Temporary Register Content by Addition
(mar) 5-237

Modify Temporary Register Content by Subtraction
(mar) 5-241

move
accumulator content to auxiliary or temporary

register 5-253
accumulator, auxiliary, or temporary register

content 5-254
auxiliary or temporary register content to

accumulator 5-256

Index

Index-6

auxiliary or temporary register content to CPU
register 5-257

CPU register content to auxiliary or temporary
register 5-259

extended auxiliary register content 5-261
memory delay 5-220
memory to memory 5-262
pop accumulator or extended auxiliary register

content from stack pointers 5-468
pop top of stack 5-469
push accumulator or extended auxiliary register

content to stack pointers 5-476
push to top of stack 5-477
swap accumulator content 5-629
swap accumulator pair content 5-630
swap auxiliary and temporary register

content 5-633
swap auxiliary and temporary register pair

content 5-635
swap auxiliary and temporary register pairs

content 5-637
swap auxiliary register content 5-631
swap auxiliary register pair content 5-632
swap temporary register content 5-639
swap temporary register pair content 5-640

Move Accumulator Content 5-254

Move Accumulator Content to Auxiliary
Register 5-253

Move Accumulator Content to Temporary
Register 5-253

Move Auxiliary Register Content 5-254

Move Auxiliary Register Content to
Accumulator 5-256

Move Auxiliary Register Content to CPU
Register 5-257

Move CPU Register Content to Auxiliary
Register 5-259

Move CPU Register Content to Temporary
Register 5-259

Move Extended Auxiliary Register (XAR)
Content 5-261

Move Memory to Memory 5-262

Move Temporary Register Content 5-254

Move Temporary Register Content to
Accumulator 5-256

Move Temporary Register Content to CPU
Register 5-257

Multiply 5-269

Multiply and Accumulate (MAC) 5-308
Multiply and Accumulate with Parallel Delay 5-325
Multiply and Accumulate with Parallel Load

Accumulator from Memory 5-327
Multiply and Accumulate with Parallel

Multiply 5-329
Multiply and Accumulate with Parallel Multiply and

Subtract 5-347
Multiply and Accumulate with Parallel Store

Accumulator Content to Memory 5-367
Multiply and Subtract 5-369
Multiply and Subtract with Parallel Load

Accumulator from Memory 5-379
Multiply and Subtract with Parallel Multiply 5-381
Multiply and Subtract with Parallel Multiply and

Accumulate 5-390
Multiply and Subtract with Parallel Store

Accumulator Content to Memory 5-401
Multiply with Parallel Multiply and

Accumulate 5-283
Multiply with Parallel Multiply and Subtract 5-295
Multiply with Parallel Store Accumulator Content to

Memory 5-305

N
Negate Accumulator Content 5-403
Negate Auxiliary Register Content 5-403
Negate Temporary Register Content 5-403
negation

accumulator content 5-403
auxiliary register content 5-403
temporary register content 5-403

No Operation (nop) 5-405
nonrepeatable instructions 1-20
nop 5-405

O
operand qualifier 5-466
OR 5-48

P
Parallel Modify Auxiliary Register Contents

(mar) 5-406

Index

Index-7

Parallel Multiplies 5-407

Parallel Multiply and Accumulates 5-419

Parallel Multiply and Subtracts 5-454

parallel operations
addition with parallel store accumulator content

to memory 5-29
load accumulator from memory with parallel store

accumulator content to memory 5-189
modify auxiliary register content with parallel

multiply 5-224
modify auxiliary register content with parallel

multiply and accumulate 5-226
modify auxiliary register content with parallel

multiply and subtract 5-231
modify auxiliary register contents 5-406
multiplies 5-407
multiply and accumulate with parallel

delay 5-325
multiply and accumulate with parallel load

accumulator from memory 5-327
multiply and accumulate with parallel

multiply 5-329
multiply and accumulate with parallel multiply and

subtract 5-347
multiply and accumulate with parallel store

accumulator content to memory 5-367
multiply and accumulates 5-419
multiply and subtract with parallel load

accumulator from memory 5-379
multiply and subtract with parallel

multiply 5-381
multiply and subtract with parallel multiply and

accumulate 5-390
multiply and subtract with parallel store

accumulator content to memory 5-401
multiply and subtracts 5-454
multiply with parallel multiply and

accumulate 5-283
multiply with parallel multiply and

subtract 5-295
multiply with parallel store accumulator content to

memory 5-305
subtraction with parallel store accumulator

content to memory 5-627

parallelism basics 2-3

parallelism features 2-2

Peripheral Port Register Access Qualifiers 5-466

pop 5-469

Pop Accumulator Content from Stack Pointers
(popboth) 5-468

Pop Extended Auxiliary Register (XAR) Content
from Stack Pointers (popboth) 5-468

Pop Top of Stack (pop) 5-469
popboth 5-468
program control

branch conditionally 5-66
branch on auxiliary register not zero 5-74
branch unconditionally 5-70
call conditionally 5-77
call unconditionally 5-83
compare and branch 5-111
execute conditionally 5-159
idle 5-172
no operation 5-405
repeat block of instructions

unconditionally 5-484
repeat single instruction conditionally 5-495
repeat single instruction unconditionally 5-498
repeat single instruction unconditionally and

decrement CSR 5-503
repeat single instruction unconditionally and

increment CSR 5-505
return conditionally 5-508
return from interrupt 5-512
return unconditionally 5-510
software interrupt 5-549
software reset 5-551
software trap 5-555

pshboth 5-476
push 5-477
Push Accumulator Content to Stack Pointers

(pshboth) 5-476
Push Extended Auxiliary Register (XAR) Content to

Stack Pointers (pshboth) 5-476
Push to Top of Stack (push) 5-477

R
readport 5-466
register bit

clear 5-88
complement (not) 5-128
set 5-522
test 5-641
test bit pair 5-643

repeat 5-498, 5-503, 5-505
Repeat Block of Instructions Unconditionally 5-484

Index

Index-8

Repeat Single Instruction Conditionally (while
repeat) 5-495

Repeat Single Instruction Unconditionally
(repeat) 5-498

Repeat Single Instruction Unconditionally and
Decrement CSR (repeat) 5-503

Repeat Single Instruction Unconditionally and
Increment CSR (repeat) 5-505

reset 5-551
resource conflicts in a parallel pair 2-4
return 5-510
Return Conditionally (if return) 5-508
Return from Interrupt (return_int) 5-512
Return Unconditionally (return) 5-510
return_int 5-512
rnd 5-518
Rotate Left Accumulator Content 5-514
Rotate Left Auxiliary Register Content 5-514
Rotate Left Temporary Register Content 5-514
Rotate Right Accumulator Content 5-516
Rotate Right Auxiliary Register Content 5-516
Rotate Right Temporary Register Content 5-516
Round Accumulator Content (rnd) 5-518
rounding 5-518

S
saturate 5-520
Saturate Accumulator Content (saturate) 5-520
set

accumulator bit 5-522
auxiliary register bit 5-522
memory bit 5-523
status register bit 5-524
temporary register bit 5-522

Set Accumulator Bit 5-522
Set Auxiliary Register Bit 5-522
Set Memory Bit 5-523
Set Status Register Bit 5-524
Set Temporary Register Bit 5-522
sftc 5-527
Shift Accumulator Content Conditionally

(sftc) 5-527
Shift Accumulator Content Logically 5-529, 5-532
Shift Auxiliary Register Content Logically 5-532

shift conditionally 5-527
shift logically 5-529, 5-532
Shift Temporary Register Content Logically 5-532
Signed Shift of Accumulator Content 5-535, 5-544
Signed Shift of Auxiliary Register Content 5-544
Signed Shift of Temporary Register Content 5-544
soft-dual parallelism 2-5
Software Interrupt (intr) 5-549
Software Reset (reset) 5-551
Software Trap (trap) 5-555
sqdst 5-566
Square 5-557
Square and Accumulate 5-560
Square and Subtract 5-563
Square Distance (sqdst) 5-566
status register bit

clear 5-90
set 5-524

store
accumulator content to memory 5-568
accumulator pair content to memory 5-588
accumulator, auxiliary, or temporary register

content to memory 5-591
auxiliary or temporary register pair content to

memory 5-595
CPU register content to memory 5-596
extended auxiliary register (XAR) to

memory 5-600
Store Accumulator Content to Memory 5-568,

5-591
Store Accumulator Pair Content to Memory 5-588
Store Auxiliary Register Content to Memory 5-591
Store Auxiliary Register Pair Content to

Memory 5-595
Store CPU Register Content to Memory 5-596
Store Extended Auxiliary Register (XAR) to

Memory 5-600
Store Temporary Register Content to

Memory 5-591
Store Temporary Register Pair Content to

Memory 5-595
subc 5-601
Subtract Conditionally 5-601
Subtraction 5-603
Subtraction with Parallel Store Accumulator Content

to Memory 5-627
swap 5-629, 5-630, 5-631, 5-632, 5-633, 5-635 ,

5-637, 5-639, 5-640

Index

Index-9

Swap Accumulator Content (swap) 5-629
Swap Accumulator Pair Content (swap) 5-630
Swap Auxiliary and Temporary Register Content

(swap) 5-633
Swap Auxiliary and Temporary Register Pair

Content (swap) 5-635
Swap Auxiliary and Temporary Register Pairs

Content (swap) 5-637
Swap Auxiliary Register Content (swap) 5-631
Swap Auxiliary Register Pair Content (swap) 5-632
Swap Temporary Register Content (swap) 5-639
Swap Temporary Register Pair Content

(swap) 5-640
Symmetrical Finite Impulse Response Filter

(firs) 5-170

T
test

accumulator bit 5-641
accumulator bit pair 5-643
auxiliary register bit 5-641
auxiliary register bit pair 5-643
memory bit 5-645
temporary register bit 5-641
temporary register bit pair 5-643

Test Accumulator Bit 5-641
Test Accumulator Bit Pair 5-643
Test and Clear Memory Bit 5-648
Test and Complement Memory Bit 5-649

Test and Set Memory Bit 5-650
Test Auxiliary Register Bit 5-641
Test Auxiliary Register Bit Pair 5-643
Test Memory Bit 5-645
Test Temporary Register Bit 5-641
Test Temporary Register Bit Pair 5-643
trap 5-555

U
unconditional

branch 5-70
call 5-83
repeat block of instructions 5-484
repeat single instruction 5-498
repeat single instruction and decrement

CSR 5-503
repeat single instruction and increment

CSR 5-505
return 5-510
return from interrupt 5-512

W
while repeat 5-495
writeport 5-466

X
XOR 5-57

Index-10

IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements,
and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are
sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment.
TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard
warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where
mandated by government requirements, testing of all parameters of each product is not necessarily performed.
TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and
applications using TI components. To minimize the risks associated with customer products and applications, customers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right,
or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information
published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a
warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual
property of the third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied
by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive
business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional
restrictions.
Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all
express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not
responsible or liable for any such statements.
TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably
be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing
such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and
acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products
and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be
provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in
such safety-critical applications.
TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are
specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military
specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at
the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.
TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are
designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated
products in automotive applications, TI will not be responsible for any failure to meet such requirements.
Following are URLs where you can obtain information on other Texas Instruments products and application solutions:
Products Applications
Amplifiers amplifier.ti.com Audio www.ti.com/audio
Data Converters dataconverter.ti.com Automotive www.ti.com/automotive
DLP® Products www.dlp.com Broadband www.ti.com/broadband
DSP dsp.ti.com Digital Control www.ti.com/digitalcontrol
Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical
Interface interface.ti.com Military www.ti.com/military
Logic logic.ti.com Optical Networking www.ti.com/opticalnetwork
Power Mgmt power.ti.com Security www.ti.com/security
Microcontrollers microcontroller.ti.com Telephony www.ti.com/telephony
RFID www.ti-rfid.com Video & Imaging www.ti.com/video
RF/IF and ZigBee® Solutions www.ti.com/lprf Wireless www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2009, Texas Instruments Incorporated

http://amplifier.ti.com
http://www.ti.com/audio
http://dataconverter.ti.com
http://www.ti.com/automotive
http://www.dlp.com
http://www.ti.com/broadband
http://dsp.ti.com
http://www.ti.com/digitalcontrol
http://www.ti.com/clocks
http://www.ti.com/medical
http://interface.ti.com
http://www.ti.com/military
http://logic.ti.com
http://www.ti.com/opticalnetwork
http://power.ti.com
http://www.ti.com/security
http://microcontroller.ti.com
http://www.ti.com/telephony
http://www.ti-rfid.com
http://www.ti.com/video
http://www.ti.com/lprf
http://www.ti.com/wireless

	SWPU068E - C55x v3.x CPU Algebraic RG
	Read This First
	About This Manual
	Notational Conventions
	Related Documentation From Texas Instruments
	Trademarks

	Table of Contents
	List of Figures
	List of Tables
	Chapter 1: Terms, Symbols, and Abbreviations
	1.1 Instruction Set Terms, Symbols, and Abbreviations
	1.2 Instruction Set Conditional (cond) Fields
	1.3 Affect of Status Bits
	1.3.1 Accumulator Overflow Status Bit (ACOVx)
	1.3.2 C54CM Status Bit
	1.3.3 CARRY Status Bit
	1.3.4 FRCT Status Bit
	1.3.5 INTM Status Bit
	1.3.6 M40 Status Bit
	1.3.6.1 M40 Status Bit When Sign Shifting
	1.3.6.2 M40 Status Bit When Logically Shifting

	1.3.7 RDM Status Bit
	1.3.8 SATA Status Bit
	1.3.9 SATD Status Bit
	1.3.10 SMUL Status Bit
	1.3.11 SXMD Status Bit
	1.3.12 Test Control Status Bit (TCx)

	1.4 Instruction Set Notes and Rules
	1.4.1 Notes
	1.4.2 Rules
	1.4.2.1 Reserved Words
	1.4.2.2 Literal and Address Operands
	1.4.2.3 Memory Operands
	1.4.2.4 Operand Modifiers
	1.4.2.5 Operator Syntax Rules

	1.5 Nonrepeatable Instructions

	Chapter 2: Parallelism Features and Rules
	2.1 Parallelism Features
	2.2 Parallelism Basics
	2.3 Resource Conflicts
	2.3.1 Operators
	2.3.2 Address Generation Units
	2.3.3 Buses

	2.4 Soft-Dual Parallelism
	2.4.1 Soft-Dual Parallelism of MAR Instructions

	2.5 Execute Conditionally Instructions
	2.6 Other Exceptions

	Chapter 3: Introduction to Addressing Modes
	3.1 Introduction to the Addressing Modes
	3.2 Absolute Addressing Modes
	3.2.1 k16 Absolute Addressing Mode
	3.2.2 k23 Absolute Addressing Mode
	3.2.3 I/O Absolute Addressing Mode

	3.3 Direct Addressing Modes
	3.3.1 DP Direct Addressing Mode
	3.3.2 SP Direct Addressing Mode
	3.3.3 Register-Bit Direct Addressing Mode
	3.3.4 PDP Direct Addressing Mode

	3.4 Indirect Addressing Modes
	3.4.1 AR Indirect Addressing Mode
	3.4.2 Dual AR Indirect Addressing Mode
	3.4.3 CDP Indirect Addressing Mode
	3.4.4 Coefficient Indirect Addressing Mode

	3.5 Circular Addressing

	Chapter 4: Instruction Set Summary
	Chapter 5: Instruction Set Descriptions
	Absolute Distance
	Absolute Value
	Addition
	Addition with Absolute Value
	Addition with Parallel Store Accumulator Content to Memory
	Addition or Subtraction Conditionally
	Addition or Subtraction Conditionally with Shift
	Addition, Subtraction, or Move Accumulator Content Conditionally
	Bitwise AND
	Bitwise AND Memory with Immediate Value and Compare to Zero
	Bitwise OR
	Bitwise Exclusive OR (XOR)
	Branch Conditionally
	Branch Unconditionally
	Branch on Auxiliary Register Not Zero
	Call Conditionally
	Call Unconditionally
	Circular Addressing Qualifier
	Clear Accumulator, Auxiliary, or Temporary Register Bit
	Clear Memory Bit
	Clear Status Register Bit
	Compare Accumulator, Auxiliary, or Temporary Register Content
	Compare Accumulator, Auxiliary, or Temporary Register Content with AND
	Compare Accumulator, Auxiliary, or Temporary Register Content with OR
	Compare Accumulator, Auxiliary, or Temporary Register Content Maximum
	Compare Accumulator, Auxiliary, or Temporary Register Content Minimum
	Compare and Branch
	Compare and Select Accumulator Content Maximum
	Compare and Select Accumulator Content Minimum
	Compare Memory with Immediate Value
	Complement Accumulator, Auxiliary, or Temporary Register Bit
	Complement Accumulator, Auxiliary, or Temporary Register Content
	Complement Memory Bit
	Compute Exponent of Accumulator Content
	Compute Mantissa and Exponent of Accumulator Content
	Count Accumulator Bits
	Dual 16-Bit Additions
	Dual 16-Bit Addition and Subtraction
	Dual 16-Bit Subtractions
	Dual 16-Bit Subtraction and Addition
	Execute Conditionally
	Expand Accumulator Bit Field
	Extract Accumulator Bit Field
	Finite Impulse Response Filter, Antisymmetrical
	Finite Impulse Response Filter, Symmetrical
	Idle
	Least Mean Square
	Least Mean Square (LMSF)
	Linear Addressing Qualifier
	Load Accumulator from Memory
	Load Accumulator from Memory with Parallel Store Accumulator Content to Memory
	Load Accumulator Pair from Memory
	Load Accumulator with Immediate Value
	Load Accumulator, Auxiliary, or Temporary Register from Memory
	Load Accumulator, Auxiliary, or Temporary Register with Immediate Value
	Load Auxiliary or Temporary Register Pair from Memory
	Load CPU Register from Memory
	Load CPU Register with Immediate Value
	Load Extended Auxiliary Register from Memory
	Load Extended Auxiliary Register with Immediate Value
	Load Memory with Immediate Value
	Lock Access Qualifier
	Memory Delay
	Memory-Mapped Register Access Qualifier
	Modify Auxiliary Register Content
	Modify Auxiliary Register Content with Parallel Multiply
	Modify Auxiliary Register Content with Parallel Multiply and Accumulate
	Modify Auxiliary Register Content with Parallel Multiply and Subtract
	Modify Auxiliary or Temporary Register Content
	Modify Auxiliary or Temporary Register Content by Subtraction
	Modify Data Stack Pointer
	Modify Extended Auxiliary Register Content
	Modify Extended Auxiliary Register Content by Addition
	Modify Extended Auxiliary Register Content by Subtraction
	Move Accumulator Content to Auxiliary or Temporary Register
	Move Accumulator, Auxiliary, or Temporary Register Content
	Move Auxiliary or Temporary Register Content to Accumulator
	Move Auxiliary or Temporary Register Content to CPU Register
	Move CPU Register Content to Auxiliary or Temporary Register
	Move Extended Auxiliary Register Content
	Move Memory to Memory
	Multiply
	Multiply with Parallel Multiply and Accumulate
	Multiply with Parallel Multiply and Accumulate
	Multiply With Parallel Multiply and Subtract
	Multiply with Parallel Multiply and Subtract
	Multiply with Parallel Store Accumulator Content to Memory
	Multiply and Accumulate (MAC)
	Multiply and Accumulate with Parallel Delay
	Multiply and Accumulate with Parallel Load Accumulator from Memory
	Multiply and Accumulate with Parallel Multiply
	Multiply and Accumulate With Parallel Multiply and Subtract
	Multiply and Accumulate with Parallel Store Accumulator Content to Memory
	Multiply and Subtract
	Multiply and Subtract with Parallel Load Accumulator from Memory
	Multiply and Subtract with Parallel Multiply
	Multiply and Subtract with Parallel Multiply and Accumulate
	Multiply and Subtract with Parallel Store Accumulator Content to Memory
	Negate Accumulator, Auxiliary, or Temporary Register Content
	No Operation (nop)
	Parallel Modify Auxiliary Register Contents
	Parallel Multiplies
	Parallel Multiply and Accumulates
	Parallel Multiply and Subtracts
	Peripheral Port Register Access Qualifiers
	Pop Accumulator or Extended Auxiliary Register Content from Stack Pointers
	Pop Top of Stack
	Push Accumulator or Extended Auxiliary Register Content to Stack Pointers
	Push to Top of Stack
	Repeat Block of Instructions Unconditionally
	Repeat Block of Instructions Unconditionally
	Repeat Single Instruction Conditionally
	Repeat Single Instruction Unconditionally
	Repeat Single Instruction Unconditionally and Decrement CSR
	Repeat Single Instruction Unconditionally and Increment CSR
	Return Conditionally
	Return Unconditionally
	Return from Interrupt
	Rotate Left Accumulator, Auxiliary, or Temporary Register Content
	Rotate Right Accumulator, Auxiliary, or Temporary Register Content
	Round Accumulator Content
	Saturate Accumulator Content
	Set Accumulator, Auxiliary, or Temporary Register Bit
	Set Memory Bit
	Set Status Register Bit
	Shift Accumulator Content Conditionally
	Shift Accumulator Content Logically
	Shift Accumulator, Auxiliary, or Temporary Register Content Logically
	Signed Shift of Accumulator Content
	Signed Shift of Accumulator, Auxiliary, or Temporary Register Content
	Software Interrupt
	Software Reset
	Software Trap
	Square
	Square and Accumulate
	Square and Subtract
	Square Distance
	Store Accumulator Content to Memory
	Store Accumulator Pair Content to Memory
	Store Accumulator, Auxiliary, or Temporary Register Content to Memory
	Store Auxiliary or Temporary Register Pair Content to Memory
	Store CPU Register Content to Memory
	Store Extended Auxiliary Register Content to Memory
	Subtract Conditionally
	Subtraction
	Subtraction with Parallel Store Accumulator Content to Memory
	Swap Accumulator Content
	Swap Accumulator Pair Content
	Swap Auxiliary Register Content
	Swap Auxiliary Register Pair Content
	Swap Auxiliary and Temporary Register Content
	Swap Auxiliary and Temporary Register Pair Content
	Swap Auxiliary and Temporary Register Pairs Content
	Swap Temporary Register Content
	Swap Temporary Register Pair Content
	Test Accumulator, Auxiliary, or Temporary Register Bit
	Test Accumulator, Auxiliary, or Temporary Register Bit Pair
	Test Memory Bit
	Test and Clear Memory Bit
	Test and Complement Memory Bit
	Test and Set Memory Bit

	Chapter 6: Instruction Opcodes in Sequential Order
	6.1 Instruction Set Opcodes
	6.2 Instruction Set Opcode Symbols and Abbreviations

	Chapter 7: Cross-Reference of Algebraic and Mnemonic Instruction Sets
	Index
	IMPORTANT NOTICE

